AD-A473 218 THE INA JO SPECIFICATION LANGUAGE: A CRITICAL STUDY(U> 1/1
HITRE CORP BEDFORD MR J D GUTT!IRII JUL 86 MTR-9735 A
ADC-TR-86-47 F19628-84-C-0001
UNCLASSIFIED F/G 972




» A Y . '.- ,' g S .’ - ..' -.'_..‘{“v.:'..f‘.‘. -t » a "o " -
RRe T AT T Y \';‘\'-? ¢ (\.. _L.:_».\‘:‘_.“__ 5

Q Mj \'\AA)\.&»‘\ v

¥k LYS W D

-
vy
¢

WA A

vy o
-""‘

g

¢

o

= 28 Jl23

u

ol

|

L < tee

Ovd

|

SRt

= |
2 e s :

RS

MICROCOPY RESOLUTION TesT CHART
NATIONAL BURFAY oy STANDARDS 1965 4

]
P
a e

,l

-

A

Mo 77,
1

.
0

TEE Tt e ea W LAASYSNN
O I Ve a
,-n vr A'l’jr.,. P

.-
-

RIS I

R AR
N -\:-J _":._':‘_‘-:..\-..‘..“.‘ ERRARS
ACRER CRY Y ]




* e -,‘ o ‘.f.'. o

RADC-TR-86-47
Final Technical Report

July 1986

THE INA J0 SPECIFICATION LANGUAGE:

A CRITivAL STUDY S

DTIC .
SLECTE S

0CT 1 7 1386 e ..

AD-A173 218

C The MITRE Corporation

! Joshua D. Guttman SRS e . b ST .. <n

APPROVED FOR PUBLIC  RELEASE; DISTRIBUTION UNLIMITED

O

............

5

[

w ROME AIR DEVELOPMENT CENTER B
| & 1

.......

Air Force Systems Command RS Oe N

Griffiss Air Force Base, NY 13441-5700 R

............................................................




‘—.".'v."-_—“" }.-“:Vv~ e

Al

UNCLASSTFIED
SECURITY CLASSIFICATION OF THIS PAGE

<

Sl OL

REPORT DOCUMENTATION PAGE

1a. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS

UNCLASSIFIED N/A
2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT

N/A Approved for public release;
Zb/DECLASSIHCATION/DOWNGRADING SCHEDULE distribution unlimited
N/A

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUMBER(S)
MTR-9755 RADC-TR-86-47

4

6a. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION

The MITRE Co . (If applicable)
€ rporation D-75 Rome Air Development Center (COTC)

6¢. ADDRESS (City, State, and ZIP Code) 7o ADODRESS (City, State, and ZIP Code)

Burlington Road Criffiss AFB NY 13441-5700
Bedford MA 01731

7 .
: "_, l;'f 'v’ ;S

8a. NAME OF FUNDING / SPONSORING 8b OFFICE SYMBOL 3 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBSER
ORGANIZATION (if applicable)

Rome Air Development Center COTC F19628-84-C-0001

8c. ADDRESS (City, State, and Z2IP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
Griffiss AFB NY 13441-5700 ELEMENT NO NO NO ACCESSION NO

64740F 2239 PR QJ

IO

fitatate

w sl
e '
P

%4

A e
]

11 TITLE (Include Security Classification)

THE INA JO SPECIFICATION LANGUAGE: A CRITICAL STUDY

‘l

a
’

.

12 PERSONAL AUTHOR(S)

Joshua D, Guttman

13a. TYPE OF REPORT 13b TIME COVERED 14 DATE OF REPORT (Year, Month, Day) 'S PAGE COUNT

|_Final FROM _Qct 84 TO_Sep 85 July 1986 84
16 SUPPLEMENTARY NOTATION

N/A

AN
.

17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Formal Development Methodology (FDM)
09 02 | design verification
12 01 KVM

19 ABSTRACT (Continue on reverse if necessary and identify by block number) T

NIna Jo, a language for formal specification and verification, provides a lucid vehicle for
the logical description of software systems under design. The present paper gives a self-
contained critical account of the full range of features of the languagel Concrete examples
illustrate its strengths and weaknesses, and an approach to giving a formal semantics for
the language is sketched. The paper addresses issues fundamental to the design of specifi-
cation languages, but is also suitable as a tutorial introduction to the Ina Jo language.

20 OISTRIBUTION / AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

LI UNCLASSIFIED/AUNLIMITED SAME AS RPT Cloric users | UNCLASSIFIED
223 NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) | 22¢ OFFICE SYMBOL
John C, Faust (315) 330-3241 RADC (COTC)

DD FORM 1473, 8a MAR 81 APR edition may be used unti! exhausted
All other editions are obsolete

LR

SECLKITY_CLASSIFICATION OF “HIS PAGE

BY 3

UNCLASSIVFIED

R

PR

PR




v s y o, v a ¢ D R e I et - v v - .. n ‘
RN - e 5 L T -..J- ("% g = AN Yy Ve e v v e . v e . .
s ”.,...... v ....\..ax'..a.. ; r\...x.. Ry ..,.“....v.. ATy s ,ﬂ....x......dVNxM..ﬂ. 1w......s. 24 ..n\...\ Prresane P
- I ! L PR N3] v s Te N ., h " e . ol L.
SN, _..\\......xs RO ARLAINNLY AP AR AT AP A AN RS R A P A A
Sahy b L S SR N AR A AL NS , Ntk ﬂ-f’.i-f\v.tf‘ ALY LEYANSY nr-_f;;-f-" Moy
RIAAUS K RCACARVORY Cl@ NS P SN M ZAMANNOAN PSR
RATDAY B PN SN L s Ar P 2O K O N PR MR
XN R wﬁ@#\..s..\.(\..\d LI I L A, o4 AN & A
-...-. ... o ¥ a0y, 'ty 'y | .....q. ....-..-.. ’ _\.. .\ ALY )
A ...... ', ._..h ..\ . %f\-!\.n\“\»-\»”\ ) Vn-.-\-..w\ 7 Wﬂ-\”f\’. _ﬁsf.\.. vale g g a.u _M\“..- N \.n \fh. :
.. PR M n . o, “ 0y AR % " " y T PR v
R AR S Al e VY. AL PP I ANPUNA et Aty - KR ge T S,
. H ! !
& _,
-4 DD \ i wn {
™ 81,
N 1 @
5 - NPTV O M O COMN~ 3 T ©—=m~om X T3
, e e =N NNMm M AT NN VOO0~ 5%
o 3
A
=] = w
/
3\

wn w
3 4] 1
. S
B <
- “ -
: ] <<
) o 5 &
% = w n en
2 z 8 a & um
2 =) -t -4 “ -
[ 5] < [ [7] -
. b (] [&] = Ve
" = = =2 o 2 Z2 /
. S o] o = = ™ 0. i
: o o
! > 5 8 & o & B S - e 8 2 ¢
U = Sug @ 5 o 2 s n° - T
3 RS o <« » O = &g - 0 nx
- © osSm 7 g2 < =z Zma a 3 ES2E —
? s 888 = g, B 3 5 8EBg 2 SRR q
- 2 238 7 38 . B, g EHg & m L )
- K E
A = 28,2 3 28 & S & 8.8 S @ a2 fa
\ 2 SEm¥< o af B E 8 88, b R mEsS
4 EPE 85 . &8 2 = ,.E % 5°% $%cB. §
P [ ] [ ») [ 2 | f=] v n [ o LUM OZ - Z -
p hnbSe % pf 3 pfppe g HEp & £2¢g ZE2g8 -
z Cobme ~ =z HMOZEFT0 ® B8 505 Eo<daan =
A - m =0z A [&] D - Sm = (] = K = o - a v £ o -
', £ Hoo < I P ST~ S S 2 mmZ B EEF " e 5 &
_ 5 gugew B EEY 2 53002 % EEZ B BE?  sEenz B
a AACAm [ ] W“CS m > NMD [%] GO i - O Rcmmc —
¥ m P2 e o = 2
= g E =] g2 a
o
& S
a — o~ (] ~ vy
L7
(7]

....w‘.‘.r ..M ﬁv -. ..M««..,..ﬁ..v-\ ~ .,.r..r.f.}.a. J.;A NN AN NS ro ...,..,.\ ...._\ P |.\ e, Xy PRI g NN T et N NN

. 7 AN



AL LET S AL

S s

o

IR ARSIl

A, SR N, e

.

ARV N WS

Sl

Pl Ty S N

R P A e

‘Ll a AP AV

f.f
'y

,-‘f'h' .',"v v);’- »
s _'- ‘l,' "*. *.,‘- S

SECTION 1

e v
A
hh

"l
&

INTRODUCTION

FDM, the Formal Development Methodology, was developed by the
System Development Company beginning in the mid-seventies. One of
three specification and verification systems endorsed by the National
Computer Security Center, it has been used for design verificatiom
in a number of secure computing systems projects. Most notable
among these is probably KVM, carried out at SDC, which attempted to
transform IBM s Virtual Machine operating system into a kernelized
secure system.

FDM aids in the design of large software systems. It allows
the user to describe overall requirements for the system he is
developing, and provides a structured environment to help him write
the system specifications in a step by step way. As the system
specifications evolve, the FDM tools help the user prove that the
requirements will hold for any system satisfying the current
version.

o

>

P
va'L

e

It is important to note at the start what FDM is and is not.
The methodology helps us to specify systems, and to verify that the
specifications fit our requirements. It does not help with
implementation. A human being must do the final coding, into some
programming language, entirely by hand. Moreover, although FDM
supports proofs that the specifications satisfy system requirements,
FDM does not currently provide any machinery to help prove that a
collection of programs is a correct implementation of the
specifications. There have long been plans to add this capability
to FDM, but they appear to have run aground. We will return to this
issue in a subsequent report, in the meantime emphasizing only that
FDM allows us to produce verified specifications but not, at least
for the present, verified code.

2

o

AR R

~
FLERVENG
>

A 4
-
-

v 't‘"l 'y

L]
|
a

NN

-S"' f"t" Fd
L »

“uluiulels

'3 13
Weyy
el
AN
el
N

The specifications and system requirements are expressed in the
language Ina Jo, which was created just for FDM. 1Ina Jo is not a
programming language, as it is not used to represent algorithms.
Rather, it is a descriptive language: it is used to describe the
results of procedures in a way that does not depend on the
algorithms chosen to implement them.

A AN

e N A)

‘

Descriptive languages are a natural tool for writing
specifications. Specifications formulate the overall goals of a
software package, and can thus guide the choice of algorithms and
data structures for the software. Therefore, we want to express

‘v by

PRV AV




PHRY

Ag" I N}
"ﬁbe*w‘

specifications 1n a language that does not commit us to particular :ﬁsl
algorithms and data representations.

ADSTRACT MACHINES

An Ina Jo specification describes the system under development
as an abstract machine. The notion of an abstract machine gives a
flexible framework useful in a variety of areas of computer science
[Dijkstra, 1972, Tannenbaum, 1984).

At the austere end of the spectrum of abstract machines we have
Turing machines. Near the luxuriant extreme, we have, for instance,
the UNIX shell. The user of a UNIX(TM) shell has a variety of
commands available; by typing in one of these commands, he makes the
machine perform an operation. Exactly what the machine will do is
not determined simply by what appears on the command line. It
depends also on the internal environment, for instance, on the
current working directory, on the contents of files, and so on. The
effect of a command, in turn, is to change the internal environment
of the machine, and possibly also to cause some output.

An abstract machine has an internal environment, or state, as
we shall call it, and a collection of commands. The commands cause
the machine to pass from one internal state toc another. We will
often also call the commands operations. Just as a command may have
arguments supplied by the user, we will allow operations to have
user-supplied parameters.

The machine has a particular initial state, or a set of
possible initial states, that every session starts off from. The
"uger" of the abstract machine begins by choosing an operation, and
possibly also some arguments to the operation. The machine reacts
by shifting from its initial state to a new state. As the session
continues, the user repeatedly chooses commands, causing the machine
to shift from state.

In Ina Jo, each machine comes equipped with a particular list
of variables; the current values of these variables make up the
state of the machine. That is, an Ina Jo machine-state consists of
the present values of this list of variables. Ina Jo operations
cause their values to change. Thus, an Ina Jo specification must
describe a machine by saying what its variables are, what kinds of
values each one of them can assume, and how the various operations
change the variables.

N
R
Sﬁ;;:iﬁa
b,. '@




AR 'JUNSTNNRS PN AAA PN FPIERE Y-

W

RO NS

hd

v,
YA

S
&

.y

X O

N

PRV R R ]

s

Nt eta
N \-._‘:\» R L

e« *
o
A W
LIS I O By

-\ !.-'&. - ‘--.v I‘;

A SIMPLE EXAMPLE

As an example, let us describe a simple desk calculator for
integer arithmetic. Consider what follows as a highly informal
specification for an abstract machine. Later we can rewrite it as a
formal Ina Jo specification. The machine will maintain a stack:
each new number input will be placed on top of the stack. Each
arithmetic operation -- say, addition, subtraction, multiplication,
and division, -- will cause the top two numbers to be removed from
the stack and combined. The result will be placed on top of the
stack.

To calculate the value of an expression using this kind of
calculator, one enters the expression in reverse Polish notation.
Thus for instance, putting (3 + 5) * 7, into RPN, we get

35+ 7 %,

We now enter the integers 3 and 5, apply the add operator, enter 7,
and apply the multiplication operator. When we apply the addition
operator, the numbers 5 and 3 are removed from the stack and added;
8, their sum, is placed on the stack. When we apply the
multiplication operator, the numbers 7 and 8 are removed and
multiplied. Their product, 56, is placed back on the stack.

The desk calculator will have two variables. One is the stack
itself; the other will be a display. The value of the stack can be
any list of integers. The value of the display can be any integer.
The idea is that the display will contain the number on top of the
stack, and that it will be implemented in some hardware display
device rather than in memory.

The operations of the machine include the four arithmetic
operations. These do not take user-supplied arguments, but simply
combine the top two operands on the stack. There must also be a
"push" operation, which takes an integer argument. The push
operation changes the values of both the variables. It sets the
display variable to the value of its argument, and updates the stack
variable by adding its argument to the top of the previous stack
value. It is also convenient to have a "pop" operation, like the
"clear error" key on a calculator, which discards the top value on

the stack. It updates the display to show the next value on the
stack.

Thus, we are considering a machine with two variables, one
taking integer values, the other taking lists of integers as values.
The machine has six operations. One of them, namely "push", takes
an integer as an argument.

l"'; “
.‘ B

Y
K
‘l
.'.S.
e
I} '.
s

.'._.
RPN
VAR
AT
:l

"'~ K

N -. -1 l‘
. s 2 &

NAD

&',

- k’grn,"": S ..'P"



TR a4, 0.

Cars

A EREA S NS ST

SERN O

.' -‘v v' ". l'_ LN R

A SN

by

How shall we choose the initial state of our machine? Clearly,
we want the stack to start off null, but it doesn”t matter what the
display shows to begin with. After all, every time we use the
machine we will begin by pushing an integer onto the stack; the
value we push will replace the value in the display, which can thus
have no role in the future life of the machine. We could choose an
initial value for the display arbitrarily, say, zero. Or else the
specification could omit any mention of the initial value of the
display, leaving that as an "implementation detail" to be resolved
at the time the machine is actually coded. The second idea seems
more sensible: why should we specify a fact which makes no
difference? The second approach is definitely cleaner, as the
specification will be correct no matter what the initial display is.
A basic principle behind the FDM approach is that nothing should
appear in the specification unless it is necessary for the
correctness of the specification.

CORRECTNESS OF A SPECIFICATION

What does it mean to say that a specification is correct?
Presumably, that any machine built to the specifications will
compute the right value for any expression we enter into it. There
are two parts to this: not only must the right value end up on the
top of the stack, but the display must also show it. Thus to show
that the specification is correct, we will want to show that the
right numbers end up on the stack, and also that the display always
shows the value on the top of the stack when the stack contains
values (when it is not null).

To prove that the right numbers appear on the stack, we want to
show that each of the operations causes the stack to be updated in
the right way: '"push" by pushing its argument to the old stack,
"add" by adding the top two numbers, etc. This is a fact about the
relation between one state of the stack and the next state of the
stack. That is, whether a state is correct depends on what the
preceding state was. As for the display, to prove that it contains
the correct value, we must show that it equals the value on top of
the stack whenever there is at least one value on the stack. This
is not a fact about the relation of one state of the variables to
the next. We do not have to know what the preceding values of the
variables were to know that the value in the display is the same as
the value on top of the stack. The current values are all we need
to know.

Examples like this suggest that we should separate two slightly
different kinds of correctness condition. The first describes a
connection between one state and the next. The requirement that our

h
Y “_-:‘4' y
@

L5%5%Y
Ay

'3
+

Ny
SNNN
gTK
e
wd

[ Y ‘i‘
e
5

)
s

b ]
o~
\'

.

T r
A
N
5y

Ar
[ufh

v

P

T
.

-~

. L
. R _\.' N .\
- A
- T T
) - P,
' )

LS

™



calculator has the right numbers on its stack is of this sort. The
other kind of correctness condition says something about each state
the abstract machine will ever enter. Our second requirement was of
this kind; it laid down that our calculator should never enter a
state in which the stack contains at least one number and the

display does not show the top number on the stack. ;’x;,}{ﬁﬁ;;,g
[ S S S

EATAE S

. - Sl AT A

FDM does separate these two kinds of correctness conditions. LAASAG ey

SDC terminology speaks of "constraints" and "criteria" respectively. MDA
A constraint requires that, no matter what operation we may choose ﬂﬁ‘ﬁ:;:i}}:;ﬂl
At a e T

to apply to the current state, the current state will have the right
‘ relation to the next state of the machine. A criterion is a
~ statement about every state that the machine can ever enter. It
requires that, starting from an initial state and applying whatever
operations we choose, the machine should never enter the wrong kind
of state.

' A constraint describes the succession of states, the relation

) of one to the next. A criterion expresses a property of individual
states, and demands that the machine never work itself into a state
which does not have the property.

]

I

3 Let us now take a look at the Ina Jo language, to see how

l operations and correctness conditions are actually expressed in the
FDM approach. In our exposition we will follow a slightly unusual

; strategy, as we will pretend, throughout the next section, that an

FDM specification is only a single-layered affair.

l In fact this is not true: FDM allows us to write the complete

specification in several stages, or levels. The successive layers
can use quite differer+ vocabularies, and can be based on quite
different data structures. They are connected by logical predicates
called "mappings". The ability to write layered specifications is a
valuable feature of FDM, though perhaps not as valuable as it has
been made out.

I will not be discussing the layering in FDM during the first
part of my exposition, for two reasons. First, it complicates the
syntax and especially the semantics of Ina Jo. It is not so
difficult to sketch the outlines of a rigorous approach to the

. language, if one restricts oneself to a single level. But I think

' that the full, multi-level version is a great deal harder to

: explain. Moreover, the natural way of giving the semantics is to

! convert the multi-level structure back into a single level

' description, and interpret the latter. Corresponding to the wore

! complicated semantics, the idea of correctness is essentially more
complicated for multi-level specifications. We will see that much

: more has to be proved to show that a specification satisfies its

: requirements if it is multi-level.

CHEAPATANS R

AR - 3 e . L T .’.'.-4"\','
VS VEIPLTV- U IFEFY PO P FU TT TR I Vi TS I I Tl vm i rupmi LS wre e o




W e € ¢ Ty TENR R R AR L N wEmEr ¥ e - -

-~s

- s e

Lo A A R A M AR g oy

P LI N S LA S D I R e A

Second, the idea behind the levels in FDM is not what one first
expects. Indeed, several different processes are involved as one
goes from one level to the next. I think it is easier to understand
what is going on, and why FDM levels are connected in the way they
are, if one already has a clear understanding of the individual
levels.

With this warning in mind, let us proceed to talk about an Ina
Jo spec as if it consisted of a single level. In Chapter V we will
introduce the multi-level apparatus of Ina Jo.

A NONPROCEDURAL LANGUAGE

The Ina Jo language, as I mentioned above, is not a programming
language. By that I mean that it is not procedural -- it does not
express procedures or algorithms for carrying out computations.
Rather, it is a descriptive language, designed to express what a
particular operation does -- the effect it has ~- rather than how
the operation achieves its effect.

Because Ina Jo is descriptive rather than procedural, it has a
syntax rather different from programming languages. It has no
looping constructs, no assignment statements, no procedure calls.
Instead, it is modeled -- perhaps loosely -- on predicate logic.

An Ina Jo specification for a particular operation contains a
predicate describing the effect of the operation. This predicate
describes the new values of the state variables in terms of their
old values and the parameters to the operation. For instance, for
the "push" operation in our desk calculator, we would have to state
that the new value of the Stack variable is equal to the result of
prefixing the parameter to the old value of the Stack variable. We
also want to say that the new value of the Display variable is equal
to the parameter. The "add" operation would be described by saying
that the new value of the Stack variable is equal to:

(cons (+ (car Oldstack)
(cadr Oldstack))
(cddr Oldstack))

3as one would write it in LISP notation.
To rewrite this expression in Ina Jo we need three operators.

One is ";". It means to prepend -- 1l;a is the result of putting a
at the front of the list 1. The second, ":", means tail.

o~

o

’..':'.“_‘. J‘.] N

P oA W
RS DO

AT SN
ST AN Y,

e et e et

LA SO

PR AL N P LA

NN A

?-‘:;. e i rla YR A
LR SRR SRR

-
]
»

-\11

e

LA AN

. SR

7
S,
v
s k3
N
..}

£

L AR
&
f .

W
K
]
«
" % fa

e
L]



-t ata

A
A

Oldstack:3, for instance, means the part of oldstack beginning with
the third element. Finally, l.n denotes the nth element in the list
1.

Using these operators, we can rewrite the expression as
(0ldstack:3);(0ldstack.l + Oldstack.2) .

The new value of the display should be the top value on the new
stack.

We need, then, some convention letting us refer to the values
of a variable before and after an operation is applied. The Ina Jo
convention is that a variable name refers to the value the variable
had before the operation was performed. To refer to the new value
of the variable, Ina Jo uses the "new value" operator N". Thus we
could write the predicate describing the effects of the "Add"
operation as

N"Stack = (Stack:3);(Stack.l + Stack.2)
& N"Display = (N"Stack).l .

It is important to keep clearly in mind that this is a predicate,
not a command. The sign "=" means equality, not assignment. Thus,
for instance, the order of the two conjuncts is irrelevant. The
formula means just the same as

(N"Stack).l

N"Display =
= (Stack:3);(Stack.l + Stack.2),

& N"Stack

although the latter is harder for a human being to read. Similarly,
we could write it in any logically equivalent form, such as

~(N"Display = (N"Stack).l
=>
~(N"Stack = (Stack:3);(Stack.l + Stack.2) ) ),

which would be even more unreadable. (Note that Ina Jo uses the
familiar symbols "~", "=>" and "&" for "not", "implies"”, and "and".)

Similarly, assuming we call the argument to the "push"
operation "arg'", we can describe the effects of the operation by the
predicate

N"Stack = Stack;arg
& N"Display = arg .

This says that the new value of Stack is the result of prepending
arg to the old value, and that arg is the new value for Display.

= s S, ata
N T L I Y .- T et T e . LT e et e RN L I L P T T I
3PS YA TP P ISP I PP U P TSP ST Sl S G Sl S5 B TP T § A S S G A et e ar e S Al g




These predicates have a somewhat unusual characteristic.
Namely, they are deterministic, in the sense that there is only one
possible new value for the variables, given their old values and,
with "push", the parameter. Ina Jo does not require the effect of
an operation to be deterministic, and often one wants to use
nondeterministic predicates, especially in high-level
specifications.

Let us extend the specification for our desk calculator
. somewhat to introduce a nondeterministic predicate. Suppose we
want, possibly for bookkeeping purposes, to keep track of how much
computing has been done. Moreover, the various operations may
require different amounts of computing time -- multiplication
requiring more than addition and subtraction, and division requiring
still more. However, we probably do not want to write the exact
amounts into the top level specification. That is an implementation
level detail that will depend on the hardware and so forth. We will
add a new variable TimeUsed, and add the clause

N"TimeUsed > TimeUsed
to the effects of each of the operations. Here we have to use a
non-deterministic predicate, because we do not yet know how large
the increases should be for the different operatioms.

R L L LN,

LEPUL AP S

THE PARTS OF A SPECIFICATION

The items contained in a (single-level) Ina Jo specification
fall into three essentially different parts, which we will call the
static, dynamic and correctness parts. The correctness part
contains the criterion and constraint for the specification; we will
discuss it last. The dynamic part consists of the declarations of

LA S .

; state variables, together with the descriptions of the operations of
the abstract machine. I call it the dynamic part because it is
concerned with what the machine does. The dynamic part, however,
presupposes another kind of information, contained at the beginning
of the specification. This information, contained in the static

, part, describes the types of values that the state variables can

> take on, and furnishes a vocabulary for talking about those values

. and their relationships.

B The next three chapters will be devoted to these three parts in

:: turn.

.

~
o~ N s
. T . e

-

AT PN

S e S e e e T e T
PRI AP PY PRPE VPV PR TNt W G

PRERER
D A T ]
e e e

.

o

I

'

B
2 s

e

"

S

g Lt
VY
'f"f"{.‘
A
4N .
J:{kiﬁ
e lfed
"." N5 Yy

[s
4
[d

N
'
Py
Iy

[P
R
h ]
hA
>0
|




RIS WA Dl

U

P o
LN

AR

UL LA DR

SornA

o -
LSRN

SECTION 2

THE STATIC PART OF AN INA JO SPECIFICATION

The static part of a specification contains types and
"constants". An Ina Jo constant is an object or function which is
independent of the state of the abstract machine. It either gives a
name to a member of one of the types, or gives us the vocabulary to
describe the relations between objects of one or more types. We are
able to include axioms which help to characterize the types and
constants. This facility allows us to give an algebraic or logical
description of the types and constants. We can think of the types,
constants, and axioms as describing an underlying structure, or
mathematical universe.

In the dynamic part of the specification, the abstract machine
will be specified in terms of the objects in this structure and the
constants defined on it. Its state variables always have values in
the structure. The effects of the operations of the machine on the
state variables will have to be specified in terms of the individual
constants and function constants defined in the structure. Thus,
the static part is the basis in terms of which the rest of the
specification is written.

TYPES

Most modern programming languages divide objects into types,
allowing only objects of a single type to be assigned to a variable.
Ina Jo uses a similar approach. All data objects are divided into
types, and each variable is associated with a particular type of
object. Thus, each state variable is declared with a particular
type, and its value must always be a data object of that type. Each
parameter of an operation must also have its type, and it would be
nonsense to try to perform an operation with an actual parameter
belonging to the wrong type.

Ina Jo gives the user great flexibility in defining types, and
also, as we shall see, flexibility in mot defining types. For in an
Ina Jo specification, not all types have to be defined in terms of
basic, built-in types. Some types may be unspecified. These types
will be defined only later, either in a more detailed level of the
specification, or in the implementation. Unspecified types are
important in top-down development, as one often wants to work out
the operations one will need to apply to a set of data-objects
before figuring out how to structure them.

@
N T
T Y - " - »
AN J.-.: ’
AL Yk
K EAT AN
N
'J-".-\J'"z:.‘\.‘ oy
RS % -
F NS &

',h" .\?& -\ -\‘: b
B .

. _-,..,

SN
.

u;if.
L




Ina Jo has only two predefined types, namely boolean and
integer. It would also be convenient to have a predefined character
type. However, since it is easy to introduce user-defined types in
Ina Jo, this is hardly a serious problem.

User defined types may be of several kinds. First, there are
the unspecified types. These are declared in the simplest possible
way. Namely, one places the identifier naming the type among the
type declarations. For instance,

Type Securitylevel,
DatabaseObject,
User

The effect of a declaration for an unspecified type is simply to
cause the Ina Jo language processor to recognize the identifier as a
type name. The user can then introduce variables on the type,
define operations on it, and make assertions about the variables and
operations. He can decide how to implement the type at a later
time, basing his decision on this information.

Next come the enumerated types. Ina Jo declares an enumerated
type by listing the elements ~- at least two -- within parentheses;
for instance,

Type Day = (sun, mon, tue, wed, thurs, fri, sat)

declares the type Day to have those seven elements. An enumerated
type has an ordering: one element is less than another if it occurs
earlier in the declaration. So in Day, mon < wed and wed < sat.

User defined types can also be constructed from given types.
The language offers a large number of operators for constructing
types, including taking sets, lists, and tuples. Thus the following
are all valid declarations:

Type Unavailable = Set Of Days,
WorkDay = Day >< integer,
TimeCard = List Of WorkDay

An object of type Unavailable is a set of days, presumably
representing the set of days on which someone is unavailable. An
object of type WorkDay is a pair -- a tuple containing two items --
consisting of a Day and a number, designed to represent the number
of hours worked in the Day. The notation "><" is supposed to look
like a multiplication sign. It forms the Cartesiar product of two
types. One can build up tuples containing any number of items.

« @
®

«
o
h 2
>,
Yy
“
»

,
&l
/e
o,
o
N
*‘

’
-'..-:'.("
waye

NS Lo
L] Py

\.";\:.- -':,\.': :;.

»(- | Wl Sl o

v
L

-~

\.%
o

. b

A - LA . Al
SR

e - - -

AN \<\J‘_}
AN AN,
R SDA AR, A
SN
AR e
R R A
RS Nl Wl Sl Sl
» o

g

Y .'. .

“anle

PO

[N
]
¢

I

. _.. ‘: ‘.- - \-“:'1.7.




Y
L]
‘
'D
-
2,

PN o
:ff*;r;:;:}i*f‘:
AP e,
AT AN IS
SRR
R RN Sy
A 3
o
"..!'\ -
Ina Jo also allows the user to define subtypes. A subtype is a R A0

RHANE

type all of whose members belong to some other type (called the N AT o

supertype). A type which is not a subtype of any other type is PRI M

called an ultra-type. Ultra-types are disjoint: no object belongs ARHALCE N Auy

to two ultra-types.

A subtype may be unspecified, in the sense that the type
declaration does not say which members of the supertype will belong
to the subtype. Ina Jo uses the less-than sign to introduce an
unspecified subtype:

Type User,
Securitylevel,
DataBaseOb ject,
PrivilegedUser < User,
LowLevelObject < DataBaseObject

Subtypes can also be specified, meaning that the declaration
determines which objects belong to the subtypes. If the supertype
is an enumerated type, then the subtype is expressed in the same
form.

Type Day = (sun, mon, tue, wed, thurs, fri, sat),
WeekDay = (mon, tue, wed, thurs, fri)

If the supertype is not enumersted, one uses the (very powerful)
operator T". This operator should be read "the type of". For

instance,
Type MonthDay = T"i : integer (l <= i & i <= 31) RO R R
...__.: ..\.:\J:‘_.‘_:._‘.
. [SIURIOR N
declares MonthDay to be the type of integers between 1 and 31, the \f\ﬁ%f:f:fuf:i}
numbers which represent a day of a month. One might use this in NS VA
DI TN
> ]

Type MonthDay = T"i : integer (1 <= i & i <= 31),
Month = (jan, feb, mar, apr, may, jun, jul, aug,
sep, oct, nov, dec),
Year = integer,
Date = MonthDay >< Month >< Year.

Year is a synonym for integer. The two types have the same
elements, or rather, the two identifiers "Year" and "integer" both
refer to the same type. Continuing the same example, we could have

Person, /* Unspecified */

Time = T"i : integer (0 <= i & i < 24)
>< T"i : integer (0 <=1 & i < 60),

Appointment = Person >< Time,

Calendar = Set of (Date >< Appointment).




(SR uE G ey 2 Y

N Ul BN

WA AN

’-" l‘.lzl}<

("'.l."\-\ NS

I A

.
i

;' ‘.. '.- .'l ’- '.'v'.l

Coda Yy

This sequence of declarations defines a calendar as a data structure
associating zero or more Appointments with each Date, where an
Appointment associates a Person with a Time. This example ought to
give the flavour of Ina Jo data types, which can be abstract, lying
far from any particular implementation.

Formally, one can describe the T" operator as follows. Suppose
t is a type and P(x) is a predicate of objects of that type. Then
T"x:t (P(x)) is the type consisting of those objects of type t which
satisfy P.

The operator T" is very powerful. In fact, it is too powerful,
for two reasons. First, it is possible using T" to define "null"
types, types no object can belong to, for instance

Type Nullity = T" i : integer ("( i =1i ) ).

This is problematic, because the FDM Interactive Theorem Prover uses
a logic which assumes implicitly that every type contains at least
one object. Thus if a specification contains a type like Nullity,
contradictions will arise, and it will be possible to use the ITP to
prove that the specification satisfies any system requirement
whatsoever. The papers [Korelsky and Sutherland, 1984] and [Platek,
1985), which originally pointed out this flaw, illustrate the
problem by "proving" that the Bell-LaPadula security policy is
satisfied by a specification which gives every user access to every
file. They succeed because the specification contains one type
which, although this is difficult to see at first, cannot contain
any objects. Thus, the T" operator should be used only when one can
be certain that the resulting type contains at least one object.

Unfortunately this problem is exacerbated by a second problem.
A type declaration using T" can contain a complicated predicate. In
fact, since Ina Jo contains the logical quantifiers all and some, it
is possible to write predicates such that no algorithm can possibly
decide whether the predicate is true of a given object. In cases
like these it is hard to know what the type being defined really
means; moreover, it will be impossible to implement the
specification on a computer, which is of course an algorithmic
machine. In these cases, and also in less extreme ones, it will be
difficult to tell whether the type being declared is null or not.
For instance, we could define the type Fermat to be the type of all
quadruples (a, b, ¢, n) such that

(n>2) & (aexptn=0>b expt n+ c expt n)

[

N
.I
v e

. .l .l‘\"l
] »
AN

PR

X
)

4 4 o

NN
AR
p“l‘
.
(SN
o
. O

v

o INFN
Shs
*, .

o

. ." .\. e .\ .

Y

°
‘N

. N
.

L TR
S"
b
LY
\!
LY

A 3
&
5
%
Jrl,

. oy
A
l'.-".
k) "i

v ;'

,

L4

" ﬂ}'
.

'

R
f'ﬁﬂ-
WX

.
’l/l’l‘.
Dy
XXX

W
gty
LR g

b)
.
5
Y
hl
»

I

[ 4
.'6.
"4t

Y“‘ Tl"‘l'l'



‘.‘,,
.

<

t

BT 4D,

NI
A4

'LIL,L'.'- s,

O

Y
e "0 S0 N

O
.
]

N AN

D
.'.“.".‘.'-

L STl )

Kl n Fa ¥ ¥n

‘.k'.\'\-'."; ..-...l. el A e G LI S B PO NEAN A s LA

In the seventeenth century Fermat claimed that thie type is null,
but mathematicians have been unable to prove his conjecture. There
are, then, some uses of the T" operator for which one cannot tell
whether the resulting type is null or not.

Since it can be hard to tell whether a type definition

involving the T" operator is legitimate, it should be used with real

caution. Even if there is no threat of contradiction, and if all
type definitions are algorithmically decidable, reckless use of
complicated types can lead to difficulties in implementstion. For
instance, they disguise the algorithmic complexity of programs. A

program may look simple -- perhaps it just lists the elements of the

type in order -- and nevertheless be slow, for instance with the
type of all prime numbers up to some large bound. Similarly,
programs with runtime type checking will consume a great deal of
time when complicated types are present. Ope can question whether
it was wise to introduce the operator into the language. It
certainly seems like good practice to use the T" operator only with
simple predicates.

CONSTANTS AND AXIOMS

Types would be useless if one couldn’t declare constants and
variables. In Ina Jo, the variables belong to the abstract machine
one is specifying. That is to say, the variables are state
variables of the abstract machine. Jointly, they determine the
state of the machine; the purpose of the operations is to change
their values. Constants are data structures whose value cannot be
changed by any operation of the machine. They do not really belong
to the abstract machine at all. Rather, they help to characterize
the underlying structure, giving us a vocabulary for discussing the
elements of the universe. We use this vocabulary in specifying the
abstract machine and also in writing the correctness conditions.

Curiously, constants and variables do not have to belong to
declared types. Rather, they can either be in a declared type, or

else they can denote functions on the declared types. For instance,

in a specification for an operating system secure in the sense of
Bell-LaPadula, one needs a partial ordering of the security levels.
Intuitively, a subject is allowed to read a file only if his
security level dominates the level of the file, while he is allowed

to write the file only if the level of the file dominates his level.

These conditions are designed to prevent information from "flowing"
from a high level file to a low level file. Moreover, the
relationship between levels cannot be altered by auny operation of
the machine: a user cannot temporarily make Secret a lower
classification than Confidential. The partial ordering is constant

»
Vea'y
P S
ya
S
DOAAT

[N

N

. ‘D. "' .i. .I

o
.

10
CEs
L5y

‘@ lss
\j AN
) P

""'.

v‘s-f.

\?.)-'

] ‘I":._:
A

MS

R 3
S
TN S
.‘l"
\_‘l'l

o
VoCs

A"«
&

[4
5.:-
~"

.

o Jng

[
kg
Ly
..f
S(

[ 4
Y
>
i
[}
t
K

‘y Y WY
Al
ATl )

v
&

co WA

"
. ML
v .

A LI .



.i
ﬂ'ﬂiﬁ:k

S
I.l ,l

e e e
Salete ]

I\,‘:-’:":

in the sense that the operations of the abstract machine will not

alter it. Therefore we can declare the partial ordering in the
form:

Type Securitylevel

Constant
lteq(Securitylevel, SecurityLevel):Boolean.

The expression lteq is a constant in that the operations do not
alter it. But it is a function in that it "returns a value", one of
the truth values True and False. Ina Jo terminology calls it a
“constant function". This is surely an unfortunate expression,
since most of the world uses "constant function" to mean a function
which yields the same value for every argument, like the function
(Lambda x. 0) which yields the value zero for every argument x. It
would have been better to use the phrase "function constant"
instead.

Usually, one does not know the exact value of a function at
specification time: 1lteq would not be known to the specifier, who
need not even know what security levels will be on the machine.
This is one reason constants are important in a specification
language. One must specify the fact that users cannot change the
ordering of the security levels, so lteq must not be a variable.
Yet one does not know just what the value will be, so one cannot
write it out in full.

Even though one does not know the value of lteq at
specification time, one does know something very important about it.
Namely, one knows that it is a partial ordering. One must be able
to specify that a constant will satisfy certain axioms.

An axiom in Ina Jo is an expression of Boolean type which one
wants to require to be true in every implementation of the
specification. It should contain only constants, together with
predefined expressions of Ina Jo. It puts a constraint on the way
that the constants will be implemented, because no implementation
will be acceptable unless it makes the axioms true.

In the case of lteq, we want to require that it is a weak
partial ordering. A weak partial ordering is a relation which is
reflexive, transitive, and asymmetric. In Ina Jo, we can express
these requirements by saying, respectively,

A"s:Securitylevel (lteq(s,s))
A"sl,s2,83:SecurityLevel (

14

sxi
KM
N

)
Lo
3
o 1

"'\f[‘
..I

AR

2

-l

L% ]
ey

2

:l l.‘ “
A
L]

¢

A

A Sy
4 &
3
a
:'.:I':"-'. >
N AS

y %
g e
[
“
P

h )

EN AR
LA

L A A A A |
A A A N A Y
’)‘-"f‘.

)

h

R

A

Jm Je e e

A

e

v,
2
’

r
!
@

LA
“- "r., .

CaNRS

-5.
AN
NN

R

o
-
>
3
.

“avat ata™ag
e :
."::;':‘t—‘r!
OV OO
RN

L] -
NN \'-\."\:'
NN AN
A AN
i'\*s'\fsazy
LR PO ¢
\a"}‘afﬂ*j.\h‘

]

[NCATAES

LR
[ R R

-‘4- LA TR o
h‘




v L] . - - L] - 1]
g el
x ’__.‘\) RGN ALY
R AT RN
‘s Zederaalret
o D AEAENEAT Y ¢
A AENERI RN
A N AR "ﬁ
;‘ !\ ~ si- ~ w:
WS REAR NS B
& I DOINDAY .,: *"Q)
” (lteq(sl,s2) & lteq(s2,s3)) DO
=> AN
\ lteq(sl,s3) ) AT
ROENCRERENTGY
-A A"sl,s2:SecurityLevel ( (] d
) (1teq(sl,s2) & lteq(s2,sl)) o "4
. => . -:
A, .. )
) sl = 52 ) v -3
4 SRS
- The symbol A" is Ina Jo“s universal quantifier; the phrase G e
P-. A"sl,82:SecurityLevel, for instance, should be read "For all ,7~«~*.-—~7{
S SecurityLevels sl and 82, ... ". o o
. . y
F - P
o These axioms involve just the one function constant "lteq", but . S
s an axiom may also involve several different constants. For . ;
LY . . ‘o : . . . bl
instance, if Ina Jo did not contain the predefined integer functions
v of addition and multiplication, we would want to introduce them as g{;5.>._._.ﬂ
- function constants: :1:}¢:=::}5;{'
.. '-. '.‘.~.L'.‘ .'.-‘_n‘-_..'
o Constant Plus(integer, integer):integer A AANERE N
> Times(integer, integer):integer SR
- RV R
d Axiom A'"nl,n2,m:integer ( r.“,_, » A
o 3 g -"'l’\' “-“)‘v
A Times(m, Plus(nl,n2)) INCOPCAR OGN
- DS PN PN
- = NI NN
a ) . A S AR
< Plus( Times(m,nl), Times(m,n2) ) ) ::f:}“#\ BNy
7 & etc. N
- The axiom describes a familiar fact about the way !-g-u
. multiplication and addition link up, namely the distributive law. -
§ STATIC SEMANTICS OF INA JO
L The ideas we need in order to give a semantical account of the
- static part of Ina Jo are relatively simple. We interpret the
» static part of a specification by giving a many-sorted structure.
~ The objects of the various types in the specification are associated
N with entities of appropriate sorts in the structure. Individual
constants and function constants are interpreted by entities and
. functions defined in the structure. The most important restriction
o4

.

is that the interpretation must make the axioms true.

We will map each ultra~type to a sort. If S is a subtype of T,
then we will interpret S by a subset of the sort T is mapped to. If
a type is constructed from one or more base types, say by taking
tuples or lists, then its sort should be consist of tuples or lists
chosen from the base sorts. The predefined types integer and

IR

s
-I
L
LY
o
LY
*

15




Y ‘ DN
IAALT MDD

LS

Pl
Y

vt

‘b

PN
BRI

4
tsta

o
]

Th Y ® L ‘
A

L)
I ';‘.' oA

'{”3‘

L PR

B

PNy

.

boolean should always be interpreted by the set of integers and the
set of truth values respectively, as that is what they are supposed
to mean. As we expect each object in the structure to correspound to
a specified object, an enumerated type should be interpreted by a
set containing just as many objects as the type has; each constant

of the enumerated type should be interpreted by a different member
of the set.

The interpretations of individual constants and function
constants will be constrained by the interpretations of the types.
Suppose that typel, type2 and type3 are interpreted by the sets a,
b, and c respectively. Then a constant declared

sam(typel, type2) : type3

will have to be interpreted by a two-place function defined for
arguments from sets a and b. The function should yield values in c.

We can illustrate this way of interpreting the static part of
Ina Jo with an extension of a previous example. Let us declare:

Type
MonthDay = T"i : integer (1 <= i & i <= 31),
Month = (jan, feb, mar, apr, may, jun, jul, aug,
sep, oct, nov, dec),
Year = integer,
Date = MonthDay >< Month >< Year
Constant
Real(Date) : Boclean, /* Really no Feb 30 */
Next (Date) : Date,
Prev(Date) : Date,
YearLater(Date) : Date
Axiom
A"d : Date
( Real(d)
=>
Real(Next(d))

& Real(Prev(d))

& Real(YearLater(d))
& Next(Prev(d)) = d
& Prev(Next(d)) = d
)

How would we want to interpret this fragment of a specification?




Pl SR A ACA S A i G- A SR A e L g 2 g

- LR

Year must be interpreted by the set of integers, and MonthDay will
be interpreted by the set of integers from 1 to 31. Month is an
enumerated type. We must interpret it by a set containing exactly
twelve elements. Let us choose the twelve months themselves. We
will interpret the constant "jan" by the month of January; the
constant "feb" by the month of February; and so on. A Date will be
interpreted by a triple consisting of an integer from 1 to 31, a
month, and an integer. Let us call these triples "date-triples”.
For convenience we will write them in the form <18 February 1985>.

The function interpreting Real must yield & truth value when
applied to a date-triple. We will make it take the value true
except for <31 April z>, <31 June z>, etc, and <29 February &4*z+l>,
etc. We will interpret Real by the function R such that R(<x y z>)
= True if

y = January
or y = February & x < 28
or y = February & z mod 4 = 0
& x = 29
or y = March
or y = April & x < 31
or ...

or y = December;

otherwise, R(<x y z>) = False. If R is true of a date triple, we
will call it a real triple.

The function YearlLater is not too hard to interpret. We should
map YearLater(<x y z>) to <x y z+1> unless x is 29, y is February,
and z is divisible by 4. In that case the axiom causes trouble, as
<x y z+1> will not be a real triple. So let us take <l March z+1>
instead.

Rather than giving the interpretation of Next and Prev
directly, let us define an ordering on the real triples. If <xl yl
z1> and <x2 y2 22> are real triples, the we will say that <xl yl zl>
is less than <x2 y2 z2> if:

zl is less than z2
or zl = z2
and (yl comes before y2 in the year
or yl = y2 and x! is less than x2)

Each triple has an immediate predecessor and an immediate successor
in this ordering. So we can interpret Prev by the function which
maps each real triple to its immediate predecessor and -- for

17

-

At Nt arh A | oM

LSS
< P

SN

%12 W

.
W )
's s
i

o

.

)
' d 1"'1'
j aﬁéﬁ
F LS
~.

s

"
4
e

LA
a s
T

"} .
TR

. !" '*J
<
l"

r
.
S
'
LA

PR
.'I‘
P A

«

Yty o 3@
. .
< “‘:-‘. r: e
3 l“
{‘ [4
Y
1 <
.
i

.

TPt
e ) e

s
.

Y a0
]
Ty
C
L



completeness Bake ~- maps each unreal triple to itself. The
function mapping each real triple to its predecessor, leaving unreal
triples unchanged, will serve to interpret Next. This way, Next and
Prev are inverses, so that the axiom will be true.

X

[

L4
h
)
Y

e
re
<
S
[#
&

PN
ong'!

This is a concrete example showing how to interpret the static
part of an Ina Jo specification. We chose a structure having two
basic sorts, the integers and the months. MonthDays were
interpreted by a subset of the integers; Dates by a sort consisting
of triples. We interpreted the function constants by functions
defined in the structure, in a way which makes the axioms true.

R
S
.

Because we have said how to interpret the basic notions, we
have indirectly fixed the meanings of all of the compound
expressions we can build up using operators belonging to Ina Jo.
For the most part, the individual operators make straightforward
contributions to building up the meanings of expressions in which
they occur. The important point here is that the static semantics
tells us a meaning for expression we can write using the Ina Jo
language and the constants we have declared in our specification. A

1 boolean expression, for instance, is an assertion which is either

! true or false in our structure. And a boolean expression with free
variables is either true or false of a list of objects in the
structure, assuming the objects are of the appropriate sorts.

Naturally, we have not given a thorough and rigorous semantics
for the whole static part of Ina Jo. But it seems clear how to
develop such an account on the basis of these ideas. Moreover, this
sketch will help us clarify the semantics of the dynamic part, as
well as the notion of correctness and the Ina Jo inter-level
\ mappings.

AL

N

18

e

Fo e M

rs"‘."-\:x-\.":
b O T
A RTIP NND

o e e 1




SECTION 3

THE DYNAMIC PART OF AN INA JO SPECIFICATION

VARIABLES AND INITIAL CONDITIONS

Variables, like constants, may be functions on the defined
types. For instance, if we want to keep track of who has accessed
which files when, we could keep a variable Accessed:

Type User,
File,
Date

Variable
Accegsed(User, File, Date) : Boolean

This variable is in effect a function, which is intended to supply
the value True if the user accessed the file on that date. Note,
however, that there is a lot of free choice as to how to implement
an Ina Jo variable. Accessed could be kept as an array. Or else we
could associate a linked list with each user, containing the names
of files and the dates on which they were accessed. The reader will
be able to add quite a few alternatives. This is a basic feature of
the Ina Jo approach. We should be able to write the specification
without worrying about implementation details, such as how the
variable Accessed should be represented. All the specifier needs to
say is that he wants the system to be able to yield True or False
when the question whether a user accessed a file on a particular
date is asked. From the specifier”s point of view, all that matters
is that Accessed should behave like a logical function, yielding a
value for each case to which it is applied.

An Ina Jo specification may contain axioms constraining the
values of constants. Variables, by contrast, do not have axioms.
Rather, the specifier can only supply conditions restricting the
initial values of variables. The values they take on later will
depend on what operations are applied. If the specifier wants to
make sure that the values of a variable will always satisfy some
requirement, he will have to prove it. To do so he must prove that
the initial value of the variable will satisfy the requirement, and
also that no operation of the abstract machine will take an
acceptable value and transform it into an unacceptable value.

Although we will return to the details of these proofs below,
an example is probably in order. Suppose that we are specifying a

‘l'.'i."’" ‘l’ » / ., .
San e
AN

at
'

v '-' 'b' ‘s
A

N A

t



RN F T N B R T AN s & e s s v—— - - = - - —

.t

.. W e e, = ~e . o
L v T e Te Te e LA NN

LALAL ANS AT O PS
¢’/ Ay - ¢

system which is to obey the Bell-LaPadula model of security. We
want to ensure that when a user reads a file, his security level
dominates its level, and that when he writes to a file, the level of
the file dominates his file. ("No read up, no write down.") We can
think of this as a property which must always hold true of a
variable Accessed. To make sure that it will always hold, we must
ensure that no operation of the state machine allows an access
violating the principle. This is sufficient to make sure that it
will always hold true, assuming it held true at the beginning, in
the machine’s initial state. Therefore, we should stipulate it as
an initial condition on the variable Accessed.

Type User,
File,
Date,
Securitylevel,
AccessType = (Read, Write)

Constant
lteq(Securitylevel, Securitylevel) : Boolean

Axiom /** As above -- lteq is a partial ordering **/
Variable
Accessed(User, File, Date, AccessType' . Boolean,

FileLevel(File) : Securitylevel,
UserLevel(User) : Securitylevel,

Initial
A"u:User, f:File, d:Date (
(Accessed(u, f, d, Read)
=> lteq(FileLevel(f), UserLevel(u) ) )
&
(Accessed(u, f, d, Write)
=> lteq(UserLlevel(u), FileLevel(f) ) ) )

We will discuss later how FDM allows us to prove that a

property like thig one remains true as the machine moves from state
to state.

TRANSFORMS

There is one other kind of Ina Jo unit in addition to types,
constants, and variables, namely transforms, which describe
operations. These are really the most important of all: they
describe what the abstract machine we are specifying will do. The
FDM terminology for transforms is a little sloppy, and it is not

R R S T T T T TN T N N XN s N o ™

R L

a8 L AW,
.

S,

s %y
.

AN

.



AP

¢

e ! . ) -
Y S
SV W WP

always clear just how SDC is using its words, so I shall adopt the
convention that a "transform" is a patch of text written in Ina Jo,
while an "operation" is what a transform describes: a state-
changing procedure a particular machine can apply.

This distinction may seem a bit metaphysical, but it is in fact
important to keep in mind. Specifications are always -~ naturally
-- incomplete in the sense that there are many different ways of
implementing them. The role of the specification is simply to pick
out a class of possible implementations, namely those offering the
functionality the specification describes. Because the relation
between specification and implementation is slack, we often want to
keep track of the difference between what is actually in the
specification itself, and what belongs to one implementation or
another. What is written in the specification will of course hold
true of all (correct) implementations; it is a requirement. But one
implementation may be very different from another. This fact makes
it useful to reserve the word "operation' to mean the procedures
making up particular implementations, and to use the word
"transform” to mean a part of the specification. A transform is the
part of a specification describing an operation. Each
implementation must have an operation implementing each one of the
transforms in the specification. The transform is a piece of text
written in Ina Jo describing what an operation must do.

An Ina Jo transform contains two main parts, called a
"referential condition" and an "effects section". The referential
condition, or "refcond", as the jocular Ina Jo slang calls it,
describes an assumption which must hold true in order for the
operation to be applied. Thus, it is similar to the "entry
condition" of Gypsy and other systems. If the refcond is false,
then the effect of the operation is undefined. If the refcond is
true, then the effect of the operation is as described in the
effects section of the transform. The refcond may be omitted, and
often is; then it is counted as being trivially true.

One uses a refcond in order to ensure that an operation will
not be applied in circumstances in which it would be illegitimate.
For instance, going back to our desk calculator example, it makes no
sense to apply the "add" operation if there fewer than two numbers
on the stack. After all, "add" pops the top two numbers off the
stack, adds them, and places the result on the stack. We might want
to make the result undefined iff "add" is invoked when there are
fewer than two numbers on the stack. Ina Jo would express this as

Refcond (Stack:2) ~= Nil,

namely when the part of the stack beginning with the second element
is null, the result of the operation is undefined.

PRI S

.
N

Se T e BN . e
FIRAPRAT I PN Tl Sl Nl W S S S NP

]
4
'y “»

t Gt

L

g
8y
1
.
Ill"‘l -
’IIO'V.I

r

"’
[ ]

.
et

It‘
i
.
A
s




s R 5 & e T =T -

AN MR S A

LA R O

AP 2 2 T T Tl A 4

The refcond 1s rather peculiar, and should be used with care.
In particular, it is important to realize that it is in no way an
exception handling facility. Although one can think of a false
refcond as raising an exception, FDM gives us no way of handling the
exception. The result of invoking a transform in a state which
makes its refcond false ia simply to cause the abstract machine to
terminate abnormally. We shall return to this point when we are
discussing the FDM design verification paradigm. Suffice it to say,
for the moment, that if the abstract machine enters any state after
applying a transform with a false refcond has been applied, the FDM
design verification process will no longer ensure any real
correctness. A refcond is most asppropriate where there can be some
assurance that the transform will never be applied when its refcond
is false. Otherwise, it should be used only if the specifier
decides that all is lost if the transform is invoked when its
refcond is false. The refcond should be thought of as summarizing
the conditions which must hold for the transform to make any sense
at all.

The examples in this section show slightly bad style, from this
point of view. I have used refconds several times, to illustrate
the refcond construct, even though I think it would have been better
to use a conditional formula in the effect section. I include some
examples of this alternate approach in the next section.

The effects section of a transform contains the predicate which
describes the state of the variables after the operation. Let us
describe the effects section by glossing a few examples. To begin
with, the full transform specifying the "add" operation of our desk
calculator looks like this.

Transform Add External
Refcond (Stack:2) ~= Nil
Effect
( N"Stack = (Stack:3);(Stack.l + Stack.2)
& N'"Display = (N"Stack).l )

The expression External marks a distinction which will not
concern us until we turn to multi-level specifications. In a
multi-level specification, there is a distinction between External
transforms -- the normal kind which describe the operations of
abstract machines —- and internal transforms. The latter do not
describe full operations; rather they amount to macro definitions.
They can be used to simplify the expressions mapping transforms from

el

“~
N
o
W
“~

l‘l

- e




LR DI ANE S ANE S HE Sat JO0E g e fabo At gt iaft - - R B - LhaRii I -

an upper level of a specification to 8 lower level. Internal
transforms are conceptually confusing, as one expects a transform to
describe an actual operation. It seems likely that the designers of
Ina Jo had conflicting goals in mind when they invented the internal
transform.

As we noted, the effects section of "Add"” is atypical, in that
it is deterministic. The new values of the variables are completely
determined by it. 1In this respect, AddTimed is more typical:

Transform AddTimed External
Refcond Time >= 0 & (Stack:2) ™= Nil
Effect

( N'"Time > Time
& N"Stack = (Stack:3);(Stack.l + Stack.2)
& N'"Display = (N"Stack).l )

Our examples so far are still atypical in that they do not have
parameters. A transform with a parameter is the specification for
our calculator”s "push" operation.

Transform Pugh (arg:integer) External
Effect
N"Stack = Stack;arg
& N'"Display = arg

NO CHANGE
Consider next the following context.

Type User,
File,
Date

Constant
AccessPermitted(User, File) : Boolean,
NoOne : User

Variable
Accessed(User, File, Date) : Boolean,
CurrentUser(File) : User,
Today : Dste

We would like to specify an operation by which a user can open a
file, assuming that he is permitted access to it, and no one is

23

WP S S YV S W W P TP AT Yo Wl N T 1M

4
AN )
AT
P
|
\.
g

L4
.

[4

'
[/

YO
o
Ir‘\
S A

i
P |

[ A
%58
Ve

LA
“

P P IS R
)

7

LALL Y

W,
t\\x}.'.\.ﬂ.
by

5

LY

e
A4S




currently using it. The operation should update the Accessed
variable, to record that the user has accessed it today, and it
should make the user the current user of the file. On the other
hand, if the user is not permitted access to the file, or there is
already someone using it, then there should be no change in the
values of the variables.

Ina Jo contains the convenient 'no-change' notationm NC";
NC"(var_1, ..., var_n) is shorthand for:

N"var_l = var_l
& vee
& N'"var_n = var_n,

expressing the fact that the new value of the variables are the same
as their old value. We will want to use that notation to express
the effects in the case where the user is denied access.

Ina Jo also contains an "if then else'" notation, which is
written

P => Q <> R.

This is a logical truth-functional notationm, not a procedural
notation. It means precisely the same as

(P =>Q) & ("P =>R),
equivalently,
(P & Q) or ("P & R).

It will be important to us to keep in mind that neither of these is
the same as the programming language "if then else', which is not a
truth functional operator at all. The programming language
construct

if <expr>
then <statementl>
else <statement2>

means something entirely different. It instructs us to do
something, either <statementl> or <statement2>, depending on whether
<expr> is true or false. P => Q <> R does not instruct us to do
anything, it just expresses a truth value. If these caveats are
kept in mind, the notation is valuable. We should, however, stress
how important it is to keep these sorts of things in mind; a
considerable portion of the specifications for the SCOMP processor

24

.
B

® v v
2’

¥

i >
; i
» -'.--
. " m
- -~ --'
. -
. \-P..-;
. N
L o~ Loy
. A
" NV
-~ DA )
. -l

- o)
-~ '. 5 "n‘-
A A
LS RS
Sy \f' S, -'\
ERMOAE IR )
ARV PR ‘s L

110}

44

e v e e
. a

W nham

»

S A AL S

0 e e

T h
o A '.‘,

AN

=7 ¢
Y

o
o
¢

oy
57
S
[ ¢

4 Yy
v
.
3
o

“ %

[4

- 'l
k]

s
o

Pl

’x
20,2
o

P
e’

o
‘?l
h ]

X

K

é
A
i
A




P
(Y )

e

KRR

14, 4 by A S Y

PRSI L )

>
&
'~
&

’

e
s

«

\ Pl
P I R DR

.
o

l‘ l_. L‘ l_‘ o

n'.'
.l )

£ L

v A

P AL
ra

G

had to be re~done because they treated the truth-functional
conditional in HDM as if it were a programming language if-then-else
[Platek and Sutherland, 1984}.

The apparently simplest way of writing the transform turns out
not to be appropriate. One would be tempted to write the effects
section in this form:

( AccessPermitted (u, f)
& CurrentUser(f) = NoOne

N"CurrentUser(f) = u
& N"Accessed(u, f, Today) = True

<>
NC"(CurrentUser(f),
Accessed(u, f, Today) ) )

Yet, there is something odd about this predicate. Whether
values of CurrentUser and Accessed satisfy the predicate depend omnly
on their results for the arguments f and (u, £, Today) respectively.
Thus, it can not constrain the values of CurrentUser(f2) for £2 ~=
f, nor those of Accessed(u2, £f2, d) where (uZ "= u or £2 ™= f or d
~= Today). Nor do we know whether the value of Today has changed.
This is an unacceptable situation, as we do nct want to end up with
an open-file operation which changes the users of other files in an
unpredictable way.

On the one hand, we need to ensure that variables do not change
value wantonly, while on the other hand it would be too tedious and
repetitive to require that every unchanged variable appear with the
no-change operator. Clearly, we need some convention.

There are two conventions which one might make on this point.
The one that comes to mind first, and which was adopted in SPECIAL,
is that a variable like CurrentUser is assumed to be unchanged at an
argument f unless the effects section says something about its new
value. Thus, in the example above, this convention would tacitly
add the information

NC"(Today) &
A" u2 : User, f2 : File, d : Date
( ( (u2 ~=u | £f2 "= f | d = Today)
=>
NC"(Accessed(u2, f2, d4)) )
& ( (£2 == f)
=>
NC"(CurrentUser(£2) ) ) ).

25

d g,:-,*_:-
PN

z
) XX

K

X

[
'

,-.
h
a'a

LAy
Y

.7

;st-f
/o
A
SR
A
AR
rle s

A
g
Y
&
7
h 3
A
&)

h 4
=
!
’
e

)
I’

)
[}
»

;l

.
L4
r
.

<
: LA )
AR R RN

00
£ T
DN
Wl
2

)

S
[4
ﬁf
MW
\f
s

~
.
®

XN
¥
2.2
he ]
DI
v

)

‘Eh *p
LI L]
i

v
»

e
D "2
t §
s
7

v
]
P

R 2

IR
!
bt
e
.( :
)

e

Tetete
¥ £

s e

L 4R

T Y Y o
R
O

J‘. . .
wratele gt

l:;}'

B A

-
L.
-




[N ":d".t-'t-‘
OOV
AR AN

Thie probably corresponds to the way the reader understood the \f@E
example as it was written. This convention is sometimes called the ;fﬁhhiui_. *
"no primed occurrence" convention, as SPECIAL uses the prime sign ~ ?éa\a;ﬁ’k-\-‘
in much the way that Ina Jo uses the N" operator. (See [VMAN], i},::}}\j}ﬁjﬁj
[Platek and Sutherland, 1984].) The convention states that: :i{u$§ftj§j{j4
z:::': .-::3-:.'_ s

a variable is unchanged at an argument if N" is not applied to §22§23’:§£iﬁ§:

the variable with that argument.

Unfortunately, natural as this convention may seem, it is not a
good one, as it does not give us a syntactic test. It turns out to
be very difficult to express the convention precisely. It does not
mean:

Var(arg) is to be unchanged if the string of characters
"N"Var(arg)" does not appear in the effect sectiom.

After all, we may refer to arg other than by its name. Nor will it
even do to say:

¢ ‘.'\

VeteTeTeT 2"
o 0

Var(arg) is to be unchanged if no string of characters of the
form "N"Var(term)" appears in the effect section, where "term"
refers to arg.

Oy Js:
@
Lt

A

>
The notion of "referring" is hard to explicate. After all, consider 5?
the following cases: g

Type IntArray /* Array of Integers */

Transform ZeroArray (a : IntArray ) External

Effect A
A"n:integer PO
( N"a(n) = 0) ‘\.!_- Y .\'__'.E_x",\
BN
Transform ZeroEvenPositions (a : IntArray ) External ;:{{*:f\iif\f{
Bffect QRN
A"n:integer ;{“:P'i:\ :-.;:,‘.‘. .‘::T

( Even(n) => N"a(n) = 0)

We would have to say that the variable n "refers to" all integers in
ZeroArray, and that it "refers to" all even integers in
ZeroEvenPositions. It would be difficult to give a definition of
"refers to" which would make these examples work cut the way we
intend.

T .
\SHhFe

[y
'l
XS
hY

v
.
-

2
YN

L
.
()

2h

e,

’

2

P
hB)

‘ﬁ

s

'ﬂ
Ry
Ly

e e e S e e e e e e,
Bl B o & o B A l._l*-l.d. e dl




For these reasons, Ina Jo adopts a different convention. The
Ina Jo convention has it that a variable is assumed unchanged -- at
all arguments -- if the variable name does not appear anywhere in
the effects section with N" prefixed. This is at least a purely
syntactic criterion, making it preferable to the "no primed
occurrence" convention even though the latter seems more convenient.
The Ina Jo convention requires the user to specify more "no-change"
cases explicitly, as it does not try to supply as much additional
information as the '"no primed occurrence" convention. All that the
Ina Jo convention allows us to infer from the predicate given above
is that the variable Today is unchanged. It is the only variable
not occurring anywhere with the new-value sign attached. Therefore,
a8 correct Ina Jo specification for the operation to open a file has
to give more explicit information.

Transform Open{u:User, f:File) External
Effect
( (AccessPermitted (u, f)
& CurrentUser(f) = NoOne )

=>
( N"CurrentUser(f) = u
& N"Accessed(u, f, Today) = True
& A" u2 : User, £2 : File, d : Date
( (u2 "=u | £2 ~= £ | d ~= Today)
=
NC"(Accessed(u2, £2, d) ) )
& ( £2 ~= f
=>
NC"(CurrentUser(f2) ) ) )

<>
A" u2 : User, f2 : File, d : Date
( NC"(Accessed(u2, £2, 4),
CurrentUser(f2) ) ) )

AN EXAMPLE

Let us work through another example, to examine a few more of
the Ina Jo language constructs. Consider the problem of writing a
system to keep a common appointment calendar for a group of people,
All of them will write their appointments with each other in the
calendar. The system uses three main types: Person, DateAndTime,
and Appointment. The first two are unspecified -- we will not decide
yet how to represent them. An appointment will consist of the set
of Persons attending together with the of the meet’ng. The main
variable in the system, called Calendar, takes sets of Appointments
as its values.

27

gl

./~.
s
PR A

e
LAl

s,
-r..-
B
4
~ /&/54
e e

'l .l ., " .'

i
.I
L]
555
5
Il
]

4
8
5
Y
v

Yl 3

t ...'
v o
N
.\‘.'-
AYS)
» far
:'\h‘_.
BTN :
-"'. . o o™
. PR
SV .__\__\‘.\:.
.\a‘. NN
v RS S R
,I-\,l e N 5
(SAR RN R
- ¥ J
-\vf_-\- LS
Ao AN Y,

A DN

;:':'_\'
.A".l.‘.
A
RN OAON
~ s AR
ALt
PRI NI
- |.- e .,
AL .-:.-, e
P A D
4@ -




Thus, in this example we have occasion to use the Ina Jo set
operators, which are rather convenient. The operations of set
union, intersection, and difference are symbolized by "[[", "&&",
and "~~" respectively, exploiting the natural analogy between these
set operators and the boolean operators symbolized by "I", "&", and
"~"_ Ina Jo also wuses the operator 8" (read: set of) in two
slightly different ways. First, S"(s, ..., b) denotes the set whose
only members are a, ..., b. For instance, S$"(Reagan) denotes the
set whose only member is the President. Second,
S"x:Typename(Pred(x)) denotes the set of all objects x belonging to
the type named by Typename such that Pred is true of x. Thus,
8"i:integer(Divisible(i, 2)) denotes the set of even numbers. The
fact that an object is a member of a set is expressed with the sign
"<:": e. g., 8 <: S"i:integer(Divisible(i, 2)).

The Ina Jo existential and universal quantifiers E™ and A" are
also used; E"x:Typename (Pred(x)) means that Pred(x) holds for at
least one value of x belonging to type Typename.
E"x:Person(Scoundrel{x)) reminds us of the familiar fact that there
is at least one person who is a scoundrel. A"x:Typename (Pred(x))
means that Pred(x) holds for every value of x belonging to type
Typename. A"x:Person(Scoundrel(x)) is a very cynical statement.

The reader should note that this specification uses the
Definition facility of Ina Jo. In practice, this is an extremely
valuable facility, even though in theory it does not add any
expressive power to the language. We want to be able to give a
simple name to a complex expression if it will be used at all often.

This sketchy specification contains only three transforms.
These have the effect of throwing away all appointments which have
already taken place, adding an appointment, and deleting an
appointment. Each of the transforms has a refcond. One does not
delete an appointment unless it was previously scheduled. One does
not schedule an appointment for a time at which one of the
participants has another meeting. The refcond of UpdatePresent is a
way of noting the direction of time.

I have included the keywords which the Ina Jo language
processor expects to surround the specification.

STITLE Cal
SPECIFICATION CalendarKeeper
LEVEL Toplevel

- L) - - ..-'.-~.IC-, -
N W YOS NP7 PRI e SR,

S

SO

R LA LN
‘.
N
® -
A

~
g
4
222,
e/
v
E
v
5 %
>
XA

‘
o
A 4y
N
ey
iy Ay
: Py
e o
e

8
h

Y 4

‘s ‘l' v

« s

L
¢ ’
"1 e AR

v vy
» ’
oo,
e
.

Soeha
>
L

e 2 N ]
e

5
.'.
& N

«
P

»?

»|
L)
L]

LN
‘v

A

. ’ l‘
» &'
P
“ \

¥

»

L
2 l&
Lk

TR

» T, ¥

13

YW

0
v

Y

»
N »

¢

P A

OAAAs



Type Person,
DateAndTime,
Appointment = Structure

When =

Constant

Variable Calendar : A_Calendar,
Present : DateAndTime

Initial

Define

Transform UpdatePresent (Now

Refcond Lt(Present, Now)

Busy(p:Person, t:DateAndTime)
== E"a:Appointment
(a<: Calendar & p<: a. Who & a. When=t)

AT TAT TR TR

of

(Who = Set of Person,

DateAndTime),

A_Calendar = Set of Appointment

Axiom A"dl,d2,d3:DateAndTime (Le (d1, dl)
& ( ( Le (dl, d2) & Le (d2, d1) ) => d1 = d2)

& ( ( Le (d1, d2) & Le (d2, d3) ) => Le(dl, d3))

& ( Le (d1, d2) | Le (d2, d1) ) )

/* This says that Le is really a "less-than-or-equals"
relation, or a weak linear ordering.

A"p:Person, al,a2:Appointment (
( al <: Calendar & a2 <: Calendar
& al "= a2 & p <: al.Who & p <: a2.Who)
=> al.When ~= a2.When )

Lt (tl:DateAndTime, t2:DateAndTime)
== ( Le (tl, t2) & t1 ~=¢t2 )
/* strictly earlier than */

DateAndTime)

Le (DateAndTime, DateAndTime): Boolean

*/

& A"a:Appointment ( a <: Calendar => Le(Present, a.When) )

/* This says that initially, no individual has to be at two
meetings at the same time, and that no meeting is
scheduled to take place in the past

*/

Boolean

Boolean

/*************************************/

External

“,%, RV, TLvVY

L)
\?‘:
“ N
» .. -
-\.I‘..;'
l- .
[T

Ly
»
[y

P S

l.'l
v,
gt
a'-‘
2
%

"L

" 4
“n
K
‘A
:" h)
s
n
™ a*a

w

’
Ty

‘.l.'u"'.,

P

54 a8

A

Y
SRY

e

)
7

» LA

7 't ’l FON]
o
{-.;,:;.{-. AN

L

I‘. I..‘r.)_t.‘

o
2
st

1@
ky
éﬂ
1d

.
r ,f. I.
Tt

0
NN
7r
AR
P RS
2
AR
Veaa
l. .'i'}.

of
y
2.0

AN

[
.
o,

4
L1,




P e r )

5,07 0T AT

PEALAIRREA P

Pl

Effect N"Present = Now
& N'"Calendar = S"a:Appointment
(a <: Calendar & Le(Now, a.When) )

/* Update the present by assigning a later time to the
variable Present and dropping all appointments
which have already taken place */

/*************************************/

Transform Adjoin (a : Appointment) External
Refcond A"p:Person (p <: a.Who => “Busy(p, a.When) )
& Le(Present, a.When)

Effect N"Calendar = Calendar || §"(a)

/* adjoin the appointment to the calendar, but only if
it doesn”t create a conflict for a participant,
and only if it“s not scheduled for the past */

/*************************************/

Transform Remove (a : Appointment) External

Refcond a <: Calendar
Effect N"Calendar = Calendar ~~ S"(a)
/* remove the appointment from the cdlendar */

END Toplevel
END CalendarKeeper

The axiom on Le is a way of making sure that it will be
implemented as a real "less than or equals"™ relation, i.e. as a weak
linear ordering. The initial condition has two parts. The first
conjunct of Calendar ensures that no one has conflicting obligations
in the initial state of the Calendar. The second conjunct ensures
that the Calendar starts out "up to date" in the sense that it does
not contain any appointments scheduled to take place in the past.
The refcond of Adjoin ensures that no ome will be assigned
conflicting obligations as the state of the Calendar evolves. The
effecte section of UpdatePresent, together with the refcond of
Adjoin, ensures that the Calendar will remain up to date.

® ® ‘
P

r:.-:.r_'.-,'.-\'::'.r-
AN A I A
AYESARE QLGS
T A T )
R DO
AR W WAy

A A A
AT
A N T A )
A R R
L AL ol%(
e o

.

V‘,

S

P A

v "ty
h]

AR

Pl

-
B

L R T
.

R S

i -'.ffc'f-'
Ly
LI
e

o NN

o7 oY
&
4

¥

5
.,%"’
I‘;.

[#

.
.

o
s
ll

a

h

s
s CA N NG
.’\S\ \“ '\A

P
'




DYNAMIC SEMANTICS

What are the semantics of the dynamic part of a specification?
Let us suppose that we already have chosen an interpretation of the
static part of the specification: how shall we go on to give an
interpretation for the remainder of the specification?

The static interpretation associates a particular structure, or
mathematical universe, with the specification. It gives particular
sets of objects as the meanings of the type expressions, and fixes
objects and functions as the meanings of the individual constants
and function constants. Let us call the structure given by the
static semantics the "background structure®.

The dynamic interpretation will make use of the background
structure in order to define an abstract machine. We can then
understand the dynamic part of the specification to be talking about
this abstract machine. As we shall see, these abstract machines may
be non-deterministic.

What does an abstract machine consist in?
should contain three parts. First, it must contain a list of
variables. Each one of these variables will range over a set
included in the background structure. The current values of these
variables at any given time (jointly) determine the state of the
abstract machine at that time.

An abstract machine

Second, the abstract machine contains a particular state,
called its initial state. We consider this as the state that it
starts off in, every time it is "started up."” This initial state is
the basis of the definition of the set of "accessible states" of the
machine.

Finally, the machine has a set of operations, which cause
changes in the current state of the machine. Each operation has a
list of parameters, each of which ranges over some sort of object in
the underlying structure. When supplied with values for its
parameters, and a current state, the operation yields a set of
possible resulting states. This set may be empty. If so, the
machine cannot pass into a "next-state” after the operation has been
invoked with these parameters. This corresponds to a false Refcond.
If the set has just one member, then the result of the operation --
when applied to these arguments —- is deterministic. If it has more
than one member, then the results of invoking the operation are
non-deterministic. Which member of the set becomes the actual next
state in one run of the machine is "random".

31

IR . e
B N I BT N .
PP PSS PSS PR P OIS UL S Py I W

]
~ ¢

Eraa
%

‘s 1
27
h)
s

L ‘
: ‘
< v
NN NN
. @ ®
2 s'hﬁ.’-."s"\"\v
TN N AN N
RRSASARAD LAY
PR .'~l} g )
Setalee ;tﬁ "
TN NS NN
Wl Tt
EN IO N AN
- ., .
RACHACA A.‘fsd'\
AN AIE VAN Y,

T

’
-~

) '. /l .
‘."""'s "n{ 1
WUNA,

.‘
L LN
MLy

1)
o
"f
I.:‘“

. - $
Yy
:'."i ,

x




AR)  FAREARAN:  LPAPATATRERENEN NN S

s
ghstata s

* Al
v.'\.-,', 2l
A . -

" N
R

«
o

atnty)

} 3

AARRRLES

+ 5

»
P

gl

n_h

22

]
¥

.

D
% % %%

-
o
‘l *

2 7

'(

)

.

When is a particular abstract machine a possible interpretation
of the dynamic part of a specification? Let us suppose that its
underlying structure is a legitimate interpretation of the static
part of the spec, according to the approach we worked out in Chapter
II, Section 3. Then we want each state variable of the machine to
correspond to one of the variables, with a compatible type, in the
specification. The initial state of the machine must satisfy the
initial condition in the specification.

Moreover, we should be able to correlate the operations of the
machine and the transforms in the specification one-to-one. The
parameters of a transform should be type-compatible with the
parameters of the corresponding operation. Most important, the
operation should fit the specifications given in the transform. The
set of possible next-states for the operation should be non-empty --
given a current state and a set of parameter values -- just in case
the current state and parameter values satisfy the Refcond of the
transform. And, when the set is non-empty, then for any one of the
possible next-states in the set, the effects section of the
transform should be a correct description of the relation between
the current state, the parameter values, and the next state.

Let us sketch this out in the case of our calendar example, but
without going into complete detail.

The static semantics for our Calendar Keeper can be simple
enough. We can interpret the type Person by the set of people
belonging to some particular organization, say one department of a
company. We will interpret the type DateAndTime by a linearly
ordered set. Let us choose the integers. The reader may imagine
dates and times correlated with the integers to make the
interpretation more useful. The Appointments will correspond to
pairs, where the first element -- the "Who" element -- is a set of
people, and the second element -- the "When" element -- is an
integer. Let us call these pairs "meetings", in order to have a
convenient way of talking about them without confusing items in the
structure with notations belonging to the specification. The
function constant Le will, of course, denote the ordinary less-
than-or-equals relation on the integers, so the axiom will turn out
true.

The abstract machine we will use to interpret the specification
is a deterministic machine, in the sense that for each operation,
current state, and list of parameter values, there is never more
than one possible next state. Because of this, I will use 2
possibly dangerous convention in describing it. I will say that an
operation is undefined to mean that its result is the null set, and
I will say that its result is x when I really mean that its result
is the set containing x as its only member.

32

. .V."':."'."Y)T""'}"-‘w_ LIS BRSNS B B R A i A 8 ) e d

<
Sy
T

s
2

LI o

R

AL

Y b

[oR 2% % ¥ N o P

i B

.
v

. ./.f’l_

N

r




The machine has just two state variables, though it would be
permissible to use more. The first, the Cal variable, will always
have a set of meetings as its value. The second, Pres, will have
integers as its values.

In the initial state of our machine, Cal will have the null set
as its value, and Pres will have the value zero. So our machine
will be starting off with no meetings scheduled. This will safely
satisfy the initial condition in the specification.

We interpret the transform Update Present by the function UP.
UP takes an integer as a parameter. It is defined for an integer n
in a state S if the value of Pres in S is less than n. If defined,
it yields a state S” such that:

the value of Pres in S8 is n, and

the value of Cal in S8° is the set of all meetings m such that m
belongs to the old value of Cal, and the When component of m is
at least n.

UP will be defined for n in state S just if Lt(Present, Now) is
true of the value of Pres in S, and n. And the "next state" that
the function returns will satisfy the relation described in the
effects section of the UpdatePresent transform.

We will interpret Adjoin by a function AM (for "Add Meeting").
AM will take a meeting as a parameter. It should be defined for a
meeting m and a state S only if m is not scheduled for some previous
time, and adding m to the value of Cal in § would not mean that
anyone would have to be in two places at the same time. When it is
defined, its result should have the same value for Pres as S had.
The new value of Cal should contain m as well as all meetings
previously in Cal.

Remove will denote a function Rm taking a meeting as a
parameter. Rm should be defined for a meeting m in a state S just
if m belongs to the value of Cal in S. The result of Rm should be a
new state with the same value of Pres, but with m omitted from Cal.

Interpreting the dynamic part of a specification simply means
describing an abstract machine in this way. Of course, we can also
use a non-deterministic machine, unlike this one. In that case, we
must keep track of the fact that each operation really produces a
set of possible next states, rather than a single next state.

O N

P
@

.l‘._l'p v ..'

o e

S e N



SECTION 4

EXPRESSING REQUIREMENTS IN INA JO

CORRECTNESS CONDITIONS

Let us start out from our calendar example in examining the
issue of correctness. What does the correctness of the
specification involve? It seems to come down to two points. The
calendar must not send the same person to two places at the same
time, and it should always be up to date, containing only
information about the present and the future. Perhaps we should
include one other requirement, namely the demand that the direction
of time should always flow forward: every time we update the
variable Present, the old value should be less than the new value.

As we mentioned earlier, the FDM verification paradigm centers
on the two assertions which FDM terminology calls the criterion and
the constraint.

The criterion is a predicate which must hold true in every
state that the abstract machine ever enters. In our calendar
example, we would want the criterion to assert that no one has
conflicting obligations and that the calendar is up to date. It
might look like this:

Criterion
A"p:Person, al,a2:Appointment
( ( al <: Calendar & a2 <: Calendar
& al "= a2 & p <: al.Who & [ <: a2.Who)
=> al.When ~= a2.When )
& A"a:Appointment ( a <: Calendar => Le(Present, a.When) )

The constraint describes the changes that any transform can
cause: it is a8 predicate involving both the pre-operation and
post-operation values of the variables. For instance, we could
express the requirement that time should always flow forward by the
constraint

Constraint Le(Present, N"Present).
1f a transform changes the value of the variable Present, then the

old value should be less than the new value. {(Note that two of the
operations do not change its value.)

34

‘L-.l l‘(-.‘; .J 'A v .‘

o

L h]

«
0
.

1
® - "
i o

NN
AATIMN
.
3

» s

A TR
oot
I'

PN

e,
I3

‘-‘J-..‘-'
A .

o,

¢
1

>
L

IR AN
RN AN ALYy
P e e
SNSANASLA A
A A W A St
Al S Sl A
L 0 AN I
LS Sl S R N
IRCA2CNON,
ALY
Cut Iﬁfl LN .L’L‘,.L

Jaf
.E.‘
?

e e s




A specification is correct if, for every machine satisfying the :E
specification, the criterion is true i. every state the machine can :F:
ever reach, and the constraint is true for each of the operations of N
the machine, starting from any state the machine can reach. by

Thus to verify a design in FDM, we must formulate a criterion
and a constraint, and prove from the specification that they will
always be true in any state that the machine will ever enter.

.

AR
DT B
AR T |

According to our approach to the semantics of an Ina Jo
specification, a machine satisfies a specification if its underlying
structure satisfies the static part of the specification, and its
initial state and set of operations fit the description given in the
dynamic part of the specification. Let us suppose given, then, an
Ina Jo specification A and a machine M which satisfies it.

We call a state s accessible relative to M if s is the initial
state of M, or if there is an operation which may produce s when
applied to some list of parameters and a state already known to be
accessible.

Or, to restate the idea in an equivalent way, a state s -- that
is, an assignment of a value to each of the state variables in M --
is accessible at stage n if:

0, and s is the initial state of M,

i) n

ii) n = m+l, and there exists a state sl accessible at stage
m, an operation F, and values of the parameters of F, such
that s is a member of the set of possible next states F
yields when applied to sl and these values of the parameters.

A state s is accessible if, for some natural number n, it is
accessible at stage n.

A specification satisfies its requirements if, for every
machine M which satisfies the requirements, any state s which is
accessible to M, and any operation F of M, the criterion and the
constraint are true for s and F.

How do we go about proving this? What do we know about all the
machines satisfying the specification?

Obviously, what we know about all the machines satisfying a
specification A is precisely what A says. Thus, we want to use A
itself to build a proof about all states accessible to any machine
satisfying A.



AR,  REWNENUSALS R BCRIFILNNRY R e

R R
RN

.
i
¥

AN

) R
R
et ll-

DXl U

-
»"a
ot

h T e
bt A

AU

e
-.‘ ." I..

Ut RORINR

In fact, this is not hard. We know that the initial state of a
machine M satisfying A will verify the initial condition of A. So
we must show that the initial condition entails the criterion. This
tells us that the criterion will be true in the state accessible to
M at stage O.

And we know that each operation of the machine must satisfy one
of the transforms in A. So we must use the transforms to prove that
the criterion is satisfied in all states accessible at stage n+l,
assuming it was satisfied in all states accessible at stage n. We
also use the transforms to prove that the constraint is satisfied
when passing from any state accessible at stage n to a state
accessible at stage n+l.

Mathematical induction will allow us to conclude that the
correctness conditions hold for all accessible states.

How would this work in our calendar-keeper? The argument has a
somewhat simpler form in the case of the calendar-keeper than it
sometimes does. We will first argue that the criterion is satisfied
by all the accessible states; after that, we will argue that each
transform satisfies the constraint starting from any state whatever
(thus certainly any accessible state).

To begin with, if a state is accessible at stage 0, then it
must satisfy thc initial conditions on the variables. The initial
condition was:

Initial
A"p:Person, al,aZ:Appointment (
( al <: Calendar & a2 <: Calendar
& al "= a2 & p <: al.Who & p <: a2.Who)
=> al.When ~= a2.When )

& A"a:Appointment ( a <: Calendar => (Le(Present, a.When) )

Now this is -- no coincidence -- identical with the criterion.
So all states accessible at stage 0 satisfy the criterion.
Moreover, suppose that all states accessible at stage m are already
known to satisfy the criterion; we want to pcove that the states
accessible at the next stage will still satisfy the criterion.

Suppose that s is accessible at stage m, so we know that s
satisfies the criterion. And suppose that a transform T could
transform s into a new state s . We want to show that s” still
satisfies the criterion. We argue by cases, depending on which
transform T is.

36

R

e aiaiad

ad




COWE LTS,

Ll

a“

1. T is UpdatePresent:

AR, A

Transform UpdatePresent (Now : DateAndTime) External
. Refcond Lt(Present, Now)

: Effect N"Present = Now
! N"Calendar = S"a:Appointment
(a <: Calendar & Le(Now, a.When) )

" We must show that in the new state 8”, both halves of the criterion
are satisfied. That is, no one should have two meetings scheduled
for the same time, and no meeting should be scheduled for a time
already past. Now the second conjunct of the effects section
ensures that every appointment in the new calendar was already in
the old version of the calendar. So if no one had a conflict before
the transform was applied, no one can have a conflict after the
transform was applied. Moreover, the effects section also ensures
that no appointment will remain in the calendar unless it is
» scheduled for Now or a time after Now. Therefore both parts of the
) criterion will be satisfied after the transform if they were
satigfied before.

(N AR

Dl
LU -

2. T is Adjoin:
Transform Adjoin (a : Appointment) External

Refcond A"p:Person (p <: a.Who => “Busy(p, a.When) )
& Le(Present, a.When)

Effect N"Calendar = Calendar || §"(a)

Again we must show that both halves of the criterion will be
satisfied. In this case, the Effect section just tells us that the
appointment a is the only one we really have to worry about. The
Refcond contains the crucial pieces of information. We know that
the first half of the criterion will not be ruined, because the

: Refcond tells us that no one in meeting a had any other obligation
for that time. And the second half of the Refcond tells us that the
new meeting has not been scheduled for the past.

0 27

[}
o ata

3. T is Remove:
- Transform Remove (a : Appointment) External

Refcond a <: Calendar

Effect N"Calendar = Calendar ~~ S"(a)

7
4’

37

LS
l.l

N




" (e At 0 G AR T it B A N A A T T A BN LA

‘-.
A
»
)
L
o
D N T ST
o REATN NS
jé In this case, there is nothing to show, as the effects section NI
D . . . LS A
o0y ensures that the new calendar is included in the old calendar. Thus -\axaxfzgt,ﬂ
N if the criterion held in the old state, it must hold in the new PO AT
state. ) X B .
) NN
. . AR
.; We can also eassily check that the constraint NS IEN
- i~ A :_-.::\'_‘:\::\
-, Constraint Le(Present, N"Present) BN
Vi PASERPLERE L AN
will always be satisfied. Since the only transform which changes
5 the value of the variable Present is UpdatePresent, and since the
- Refcond of UpdatePresent is Lt(Present, Now), the constraint is
-5 surely satisfied.
L So we have given an intuitive argument for the correctness of
® our calendar-keeper. The argument is simpler than it might have
o been, in two ways. First, we could prove that the constraint would
.:j be satisfied without worrying about what sort of state we were
:\: starting out from, whether an accessible state (which would satisfy
. the criterion) or not. In general, the argument for the constraint
o may make use of the assumption that we are working with amn
' accessible state.
A T
-j& Actually FDM gives us slightly more flexibility than this. It el
§ﬁ~ is a peculiarity of proof by induction that it is often easier to '{f:ﬂ
o prove a stronger statement instead of a weaker statement. The ._;:}
fj} reason is that in proof by induction, we argue that our conclusion e
/ is true for m+l on the basis of the assumption that it is true for
- m. Sometimes we need a strong assumption. For instance, suppose we
o define a function f on non-negative integers by saying:
-~ £00) = 10;
). / f(n) + 1 if £(n) > 8
.. f(a+l) = {
= \ f(n) - 1 otherwise.
:: Now if we want to prove that f(n) is always greater than 0, we will
“ actually have to prove something stronger. Namely, we will have to
show that f(n) is always greater than 8. This is true because
(L~
~
2 i) £(0) > 8; and -
LS ¥ .
~ ii) if f(n) > 8, then f(n+l) = f(n) + 1 > £(n) > 8. SN AN Y
x NN AN
T A r TR Ch,)

5% %ie

Since f(n) is greater than 8, it is also greater than 0. The reason
we need to prove the stronger assertion to get the weaker one is
that we need to assume that f(n) > 8 to infer that f(n+l) > f(n).



-~
N

e
e

" -" A.'Jﬂ.l

. _'1. AL

it t]
D

LSRR

A

..\

L3

4%

‘@
o .
« 870

[y
’

»
L PRI

<

PR

SaSenS

N ".v". ..' .‘." ." '

ot I Bah i Bt B e BB S I e

Thus step ii) collapses if we are trying to prove directly that f(n)
is always greater than 0.

This situation arises often when one is arguing by induction.
Thus FDM allows us to prove something stronger than we really need.
We may add an "invariant condition" to our criterion. The invariant
condition, like f(n) > 8 in the example above, is an additional
claim which may not interest us in itself at all. Its only purpose
is to help us complete the inductive argument by summarizing
information which must remain true for the argument to go through.

We can now express the theorems which FDM requires us to prove
for correctness. We must first prove that the criterion and the
additional invariant condition will start out true -- that they are
true in all states accessible at stage 0. Since all we know about
the states accessible at stage O is that the initial conditions on
the variables are true, we must prove:

Initial~condition => Invariant-condition & Criterion

To complete the proof of correctness, we have to show that the
correctness conditions will hold true of any state accessible at
stage m+l, assuming that they held true for all states accessible at
stage m. To show this, we must show, for each transform T in the
specification, that if we apply T to a state in which the
correctness conditions are satisfied, then they must remain
satisfied. For if no transform in the specification allows
correctness to be destroyed, all states accessible at the next stage
must be correct. Thus for each transform T, we want to be proving:

Invariant-condition & Criterion & T
=> N"Invariant~condition & N"Criterion
and
Invariant-condition & Criterion & T
=> Constraint

By N"Expr I mean the expression one gets by replacing each
state variable Var by N"Var throughout Expr. For instance, if Expr
is

A"p:Person, al,a2:Appointment
( ( al <: Calendar & a2 <: Calendar
& al ™= a2 & p <: al.Who & p <: a2.Who)
=> gl.When ~= a2.When ),
then N"Expr is

A"p:Person, al,a2:Appointment

39

LA AP 4
“i}???l
AR
&
7.y

-,
"
?

hY

[
«% S
RV

a_ & °
. e
e
.l
M
z

PP

's'r’s

‘2" ‘l"'.".ﬁ [

L I



hE

v

4, R

AGREN LA S AL AL BN ALAE AL NS

A el Aol

!

L 8 A A AP, Tt oot T A b P e v P e R PR e T e i
7 '.‘.-:'.r.‘f_\'.r_'f_'
A
A PRGNS S Yt
Y — L
) y v_'v Y o \'.-1
-~ A AL AP A
o ".f}.'_ AN,
T : AT
- AR
- NI
S AN
N AN AL
. ( ( al <: N"Calendar & a2 <: N"Calendar t's'a!l'xfc
~5 & al "= a2 & p <: al.Who & p <: a2.Who) q}*l\:%;xﬁﬁ
b => al .When ~= a2.When ) \f:f{#:*"ﬁ;
o : e
-:' : . : TN
o Calendar, the only state variable occurring in the expression, has RGN Pt N
¢ " " . sy s e B
been replaced by N"Calendar. Thus, N"Invariant-Condition says that ) -
O the invariant condition holds of the new values of the variables, G
S and N"Criterion says that the Criterion holds of the new values.
o The Constraint, of course, describes the relation between the new
N and old values of the variables, so we do not have to apply the N"
~ operator to it.
~ But what do we mean by inserting the transform T as an
~ assumption? The transform is represented by the conjunction of its
o refcond and effects section. Thus for instance, the first theorem
. to be proved for the transform Adjoin would have the form:
‘r
.5 Invariant-condition & Criterion
g
.~ & A"p:Person (p <: a.Who => “Busy(p, a.When) )
r & Le(Present, a.When) /* (Refcond)*/
A
e & N"Calendar = Calendar || S"(a)
* * .
r / (Effect) / ] ,."‘ B
S N"Invariant-condition & N"Criterion, N
e, -
...‘ . 3 . I3 . 3 ." '
. where Invariant-condition and N"Invariant-condition happen to be '
. vacuous. And the argument, showing that the criterion is still true e
N after Adjoin has been applied, relied on both the Refcond and the -
~, Effect section. Ny
- Because Refconds are used as premises in the proof that a ﬁ:
. specification is correct, the FDM verification paradigm tells us )
- nothing about correctness in case a transform is ever applied when
- its Refcond is false. Everything that we prove presupposes that
- they are always true when the transforms are applied. Therefore, we
- cannot allow the abstract machine to pass into any state at all if a
<., transform is applied when its Refcond is false. For if the machine
passed into any state, we would have to know that the resulting
3 state satisfied the correctness conditions. Since the proofs of
_j correctness assume the truth of the Refcond, we would have no
| g information about the resulting state. This is the reason the
}} Refcond is in no way an exception handling mechanism: if an
o "exception" of this sort is ever raised, the machine terminates
@ abnormally.
L
-’ .
o4, Let us call this the "no next state problem".
"
> 40
’
L4




P e 4

s

LP b Y Nl

PN Nl M b

The reader might think it easy to get around this problem. One
might suggest that if a transform is applied when its refcond is
false, then there should be no change in the value of any variable.
Since the state will be unchanged, the machine cannot pass from a
correct state into an incorrect state.

Strictly speaking, this interpretation is not open to us. It
is perfectly legitimate to have a constraint requiring that every
transform should change the value of at least one variable. And we
may be able to prove the correctness theorems

Invariant-condition & Criterion & T
=> Constraint.

Yet if T contains a refcond, this contradicts the proposed
interpretation. We will have proved that there is always some
change. So the interpretation is not acceptable as it stands.

Nevertheless, this contains the germ of the right solution to
the no next state problem, namely that the Refcond is no longer
needed. 1Instead of

Transform {Name and parameters} External
Refcond {Formulal}
Effect {Formula2},
we can always write:
Transform {Name and parameters) External

Effect {Formulal)
=)
{Formula2)
<>
NC"({variables}).

As the latter is what we mean, it is much to be preferred. Thus we
have a simple translation strategy to eliminate the Refconds from
Ina Jo specifications. The resulting specification will ensure the
same behaviour so long as no transform is invoked with a false
Refcond. When a transform is invoked when its Refcond is false,
there will be no state change. Specifications in thus form do not
present us with the "no next state problem"”.

,
®
:
-
[

3
P
LI |
Lt}
H Y

r
’

A5

)
T
LI WL S

4
/

D
n'l
1

NS
I‘,
l' l.
Ay
s v 8
h e
XK

* )
LY S
« 4
,aa:d
)
.‘

~
P N

rr
.'l
v
e Ld

« l‘. Y s
A
L I}
Y A §
4
a
T
‘1{'-{':{'
T Irr
_." Vit

<
s *v

4,
5

L

& £

’
“
J"

> L
I
o)

}l
_"'

l‘x

4 &
AR AR
B

= 4

e
Al
AN
LA

.
A.;J

[ 2 4
.
'l'b

s,
e’ s

O
e a0,

. v' .' " /
r'e's
A
5
'. ,' }l "

-
-~
)

4
%
'l
o
>
’
“y
'l




¢
.
»
'
,
o
'
‘.
'
.
L
.
»
»
.
.
.
I
v
o
'
»
v
f
-
'
&
#
»
v
x
.
[
'
r

:

x
*,

.'f"l,
e
(i
IR
g
'I"
‘ l‘ a
e

’
g
RN

»
Py
o T

S
.
PN

l'll‘.f

[ )
'l.n

L]
RSN N
)

a1
.
.
a!
%
L I

4
*
A

> P
b

v !.'_

Pt et S
M

»

P
NSALNAY

=
»
.

.
»

&

VA
-

.
(S NN

CORRECTNESS ARND SECURITY

Let us now look more closely at the way the conception of
correctness embodied in FDM influences the designer of a secure
computing system. We will begin by working through a specification
which embodies a simplified Bell-LaPadula [Bell and LaPadula, 1975;
Millen and Cerniglia, 1984] approach to computer security.

g The Bell-LaPadula model divides the entities that it deals with
into subjects and objects. A subject is an "active" entity, in
general either a user or a process, although in our simplified

g example we can think of each subject as a user. An object is a
% "passive" entity, a repository of data, like a file. Each object
- has a security level, which one generally takes to be a
", classification (unclassified, confidential, secret, top secret)
‘ together with a set of need-to~know categories, e.g. nuclear or
- crypto. A user has a right to read a file only if he is cleared to
T its level and fits all its need-to-know compartments. Although this
[+ is the usual interpretation of security levels in practice, for our e
- purposes, all we need to know about the security levels is that they PR
- are partially ordered. TR
E . . . ® a9~
i ach user has a maximum security level, the level he is cleared e
. to, and also a current level. Since the basic maxim of the Bell- st
iy LaPadula model is "no read up, no write down", a user’s current r::u}:a:,:ftﬁ
N level must dominate the levels of all the files he is currently RS Ny
- reading, and must in turn be dominated by the levels of any files he f:thxfx?:Iu'
is currently writing to. This ensures that no information can pass ;'”"ﬁ""-’
z from a file into another, less highly classified file. The T RATRIN
- requirement that no user read a file above his current level is N SN
L called the "simple security condition". The requirement that he not NN NN
- write into a file below his current level is called the "*- R PO
, property”. Bell and LaPadula also require that the level of a file ;j:a:;:i:;;i

not change during normal operation.

. Besides subjects, levels, and files, our specification has a
N type for file identifiers, one for the items to be stored in files,
- and one to represent the kind of access that a user has to a file

(read or write).

3 S$TITLE B_L 1
SPECIFICATION B_L_versionl
- LEVEL TopLevel

Type Subject,

Level,
- FileId, /* items suitable for naming
files, perhaps character strings */

- 42

e
- L

v

[ Wy o ot AN
SR SN e
AA‘J‘A&JAJ_A'-‘ AT e TS



ML) - A

wle?u ¥

' v

as 4w
4o e

.
s 2

-‘n“

[y NN :! .ﬁ

ey ’
PN A et

R ANy

Pl
)
PR

LAY ..\ l‘ ... ]

A A, A A

Content, /* whatever items we
want to store in files */
Cont_List = List of Content,

Accesskind = (read, write),

File = Structure of (flevel = Level,
fowner = Subject,
fcontents = Cont_List)

Constant
Syslo : Level,
/* Lowest level on system */

lteq(Level,Level) : Boolean,
/* The partial ordering of security levels */

Clearance(Subject) : Level,
/* User“s maximum level */

NoOne : Subject
/* Owner of files not currently in use */

Axiom
/* lteq is a partial ordering with least element SysLo */

A"11,12,13:Level
(
lteq(1ll, 11)
& ( lteq(1l, 12) & lteq(12,11) => 11 = 12)
& ( lteq(1l, 12) & lteq(12,13) => lteq(ll, 13))
& 1lteq(SysLo, 11)
)

The state of the system is determined by six variables. Although
each one of them is specified as if it were a large array, some of
them would certainly have to be implemented in other ways. The role
of the first five variables is to record the current state of the
file system, indicating who has the right to access files, and who
is currently accessing them. The last variable, Buffer, contains
the information that users are currently reading out of the file
system or writing into it.

Variable
InUse(FileId) : Boolean,
/* True if 1d is currently associated
with a real file*/

R

I )

‘l

N v

L Ay
(]

>~
«

< .
T A,
CAGANGASAED
AT AN
l\'\ ..‘ .' -\ -\ ~'
O AN AN
XS
AOATSATA &)
.‘ .-.:h.\i. .I.\'-\f
= h9AS '
e N,



FileSystem(Fileld) : File,
/* "Retrieves" the file given its id */

Discretion(Subject, FileId, Accesskind) : Boolean,
/* Indicates owner intends to allow subject
accesses of this type */

AccessMatrix(Subject, FileId, Accesskind) : Boolean,
/* Indicates subject has file open for accesses
of that type */

CurrentLevel(Subject) : Level,
/* Must be higher than the files currently
being read, lower than the files
currently being written */

Buffer(Subject, Accesskind) : Cont_List
/* Subject’s read buffer is like his monitor;
write buffer is like his keyboard */

Define
/* A few convenient abbreviations */

ReadOk(s:Subject, f_id:Fileld) : Boolean
== lteq(FileSystem(f_id).flevel,
CurrentLevel(s)),
/* SimpleSecurity */
WriteOk(s:Subject, f_id:Fileld) : Boolean
== 1teq(Currentlevel(s),

FileSystem(f_id).flevel),
/* StarProperty */

AccessOk(s:Subject, f_id:Fileld, a:Accesskind) : Boolean

InUse(f_id)
& (a = read => ReadOk(s,f_id) )
& (a = write => WriteOk(s,f_id) )
& ( Discretion (s, f_id, a) )

The correctness conditions for our specification are the
requirements in the Bell-LaPadula model. They lay down the simple
security property and the *-property, in addition to the
discretionary policy that individuals choose for the use of their
files. Moreover, the current level of a user cannot exceed his
clearance. One additional requirement concerns files that are

Vel

a4,
']
.

4
'

. .
4-’-
LRR N

. ¥,

:‘0

ﬁ.l
&

L
o

[N




)
)

-
P

RNy

o

w -
“l“..

Nt BT WY
RV S

[

-

At lr|f|

AL

ﬁwl p

discarded: their contents must be destroyed. These conditions make
up the criterion for our specification. The constraint is that the
level of a file should not change while it is in use.

Initial /* Currentlevel le clearance & AccessOk
& Non-Existent Files Are Null */

A" 8 : Subject, f_id : Fileld, a : Accesskind
( lteq(Currentlevel(s), Clearance(s))

& (AccessMatrix(s, £_id, a)
=> AccessOk{(s, f_id, a) )

& (“InUse(f_id) => FileSystem(f_id).fcontents = Nil
& FileSystem(f_id).fowner = NoOme
& FileSystem(f_id).flevel = SysLo)
/* Clear Out Unused Objects */

Criterion /* Currentlevel le clearance & AccessOk
& Non-Existent Files Are Null */

A" s : Subject, f_id : FileId, a : Accesskind
( lteq(CurrentLevel(s), Clearance(s))

& (AccessMatrix(s, f_id, a)
=> AccessOk(s, f_id, a) )

& (“InUse(f_id) => FileSystem(f_id).fcontents = Nil
& FileSystem(f_id).fowner = NoOne
& FileSystem(f_id).flevel = SysLo)
/* Clear Out Unused Objects */
)

Constraint /* files in use retain their levels: tranquillity */

A"f_id : Fileld (
( InUse (f_id) & N"InUse(f_id) )

=> FileSystem(f_id).flevel = N"FileSystem(£f_id).flevel

)

Next we must specify the operations we want our machine to perform.
The specification will contain seven transforms. A subject can get
access to a file, or close it; he can read it or write it if he has
the right kind of access; he can create a file or, if he has write
access, destroy it. A subject can also charge his current level.

45

e e e e e e

o T e e e e e e
dondadlaalalazat ap'a Loy’

» 1
O]

\ -
W

N
.L.!f'

s
R
D)

?
Peo iR
P4 B

LY
!_ v -,
.:‘:, ._'
:-:,:('_ -\
."“\"_ A s
‘t .-1 .' .-‘
LN A " P
‘-- ... ". ‘.- '.\ I. “h-
o - - -
NI
.*‘
- ; N
-J.‘. oL “e )
AR S .
AL SRS '_“-".‘- o
ORS ANy

-,
"

.

Iy



har M ¥ RPN BV 3y

e,
&S

KR  FARRILRPIN |

-

The GetAécess transform causes no change if the subject would
not be permitted to have the requested kind of access to the file in
question. If the access is permissible, it updates the
AccessMatrix. DiscardAccess(s, f_id, a) causes AccessMatrix(s,
f_id, a) to be false.

oAl

N

U d
. Transform GetAccess(s : Subject,
o f_id : Fileld,
ﬁ a : Accesskind) External
! Effect
., (
” AccessOk(s, f_id, a)
,-.: >
: N"AccessMatrix(s,f_id,a) = True
7
. & /* No other entry is changed */
.._ A" 82:Subject, £2:Fileld, a2:Accesskind(
o (82 =8| f2 "= £f id | a2 ™= a )
"-: =)
'a NC"(AccessMatrix(s2,£2,a2) )
: )

A

LY

'; <> [* Else no change */

s'_:

::: A" a2:Subject, f2:Fileld, a2:Accesskind

' (NC"(AccessMatrix(s2,£2,a2) ) )

>, )

\ Transform DiscardAccess(s : Subject,

by f id : Fileld,

E; a : Accesskind) External

]

< Effect

- (

> N"AccessMatrix(s,f_id,a) = False

" & /* No other entry is changed */
A" 82:Subject, f2:Fileld, a2:Accesskind
(

_ (82 =8 ) £f2 "= f id | a2 "= a )

k =)

- NC"( AccessMatrix(s2,f2,a2) )

)] )

n:. )

::',

:: 46

~

-

A .

oy
)




What can a subject do with a file he has access to? The
specification will contain an operation to read it into his read
buffer, and an -operation to overwrite the file with the contents of

his write buffer.

Transform ReadOp(s : Subject,

f id : Fileld) External
Effect
(
AccessMatrix(s, f_id, read)
=>

/* Concatenate the contents of the file with the current
contents of the buffer */

N"Buffer(s, read) =
Buffer(s, read);;FileSystem(f_id).fcontents

& /* No other buffer is changed */

A" 82:Subject, a:Accesskind
(
(82 "= g [ a = read)
=> NC"(Buffer(s2, a) )
)

<> /* Else no change */

NC"(Buffer)
)

Transform WriteOp(s : Subject,
f_id : Fileld) External

Effect

(

AccessMatrix(s, f_id, write)

=>

N"FileSystem(f_id)
= (FileSystem(f_id).flevel,

FileSystem(f_id).fowner,
Buffer(s, write) )

& /* No other entry is changed */
A" f2:Fileld, a:Accesskind
(£2 == £_id
=> NC"(FileSystem(£f2) ) )
<> /* Else no change */

NC"(FileSystem)

47

A
4

R A T AR T A . TRV R PR
ala B AT A D G S U YA Wl GRS S S thY TP S SRS S I S U

Ve I ba I S
SRS LCRR A
A AN
N ACACAGN A
NGRS TR
AL LS o
RESER IR RL AL RLE
o, I‘~J\~ J\'.
l'.\).i S rer,
R RN
&.‘!{ﬁén_ S N ¢
L

oo

g TRt
e

| Y

4

vy
P

AN
LJ"I
A2,
'l'lt'
LA

o

4 & °
e

w
[

R

\

.

ANy
X

A &
i

P}

i
!l
.
Pl

.

Ry
e
2
‘

.«
* S
-

»
r\’.. Y
z‘.-' o

* ;‘

\ " ..I A :‘ .
* ?’ ',

‘“
o a
I' l.
PO

L4

.2
ARt
s
l' . .‘_
i
W

»

D G W |




AR g S A

e o @Y 5 4 2 s » ) K < . ¢

« - ®

- v

e Ty THEN « v W ¥ R BT 7 S & 4 §F oo

This specification will not go into any more detail about the read
and write buffers and what we can do with them. Nevertheless, the
reader can imagine operations that any implementation of interest

would provide. For instance, we should be able to manipulate the

contents of the read buffer, and also pass selected contents from

the read buffer into the write buffer.

One can create a8 file with a given Fileld only if the
identifier is not already in use. If the identifier is not in use,
the transform causes it to come into use, and to be associated with
a file. The file has null contents. Its owner is the subject who
created it; its security level is specified by a parameter. On the
other side, one can destroy any file to which one has write access.
When a file is destroyed, its identifier is taken out of use, and
comes to be associated with a null file.

Transform Create (s : Subject,
f id : Fileld,

1 : Level) External
Effect
(
“InUse(f_id)
=>

/* The changes */

( N"InUse(f_id) = True

& N"FileSystem(£f_id).fowner = s
& N"FileSystem(f_id).flevel = 1
& N"FileSystem(f_id).fcontents = Nil

& /* Discretionary policy can be anything */
A"g2:subject, a2: Accesskind
(N'"Discretion(s2, f_id, a2)
= N"Discretion(s2, f_id, a2) )

& /* No other entry is changed */

A"f2:Fileld (f2 ~= f_id
=> ( NC"(InUse(f2) )

48

A AL ISR it Aia ANacpiciin Al i B SHAS 4 St SAR S OV 8 e T
. RESS

4" P4
i‘ .

L4
[y

e
STE

'y,
%

»

.'

.
Y

A
oy

'!l % s :I )l

Py
. * i g
i':i '-/ .,




A

& NC"(FileSystem(f_id))
& A"s2:subject, a2: Accesskind
(NC"(Discretion(s2, £2, a2) ) )
)
))

<> /* Else no change */
( NC"(InUse, FileSystem, Discretion) )

RO YRV RN I b » Fhuar

R

f )

! Transform Destroy(s : Subject,

o f_id : Fileld) External
. Effect

o (

; AccessMatrix(s, f_id, write)

- ->

- N"InUse(f_id) = False

o & N"FileSystem(f_id).fcontents = Nil

o & N"FileSystem(f_id).fowner = NoOne

i & N"FileSystem(f_id).flevel = Syslo

- & /* Delete all accesses to destroyed object */

A"82 : Subject, f2 : FileId, a : AccessKind (
N"AccessMatrix(s2, £2, a)
<=> £f2 "= f id
& AccessMatrix(s2, £f2, a) )

v <> [* Else no change */

- (NC"(InUse, FileSystem, AccessMatrix) )

- )

& The final transform allows a user to change his current level. As a
- side effect, it empties his read and write buffers. This ensures

- that when a user lowers his current level, no highly sensitive

. information can tag along. However, the change of level is

‘< permitted only if the new level is dominated by the user”’s

clearance, and only if the new level and the files the user has open
satisfy the simple security property and the *-property. Otherwise,
. there is no change.

A
A

Transform Changelevel(s : Subject,
1 : Level ) External

Effect
(  /* check new level preserves criterion */

49

S
. N T TN
PR VWV GRE Ao AR A A

R
P

L S T I I P
}, "%
22

T ala)s

o
AN
g

.l_'. '\..\ \

»

»

NN

“eTe x
. .
.

RSN

LI

0 MadAL

e

TS
F\-P\’:‘-P..-"*) Ca
AN I
(PRI NS
OV VA YA
o A A R Sl
L CPCACAT I NS
L AR YA
r“\(l ".(\. ".&f
AN

o Ny

W

.
[

‘’

Fae
o,

f

~



~ ".—f_"bl" L't " S LRI 2 LA " i A SCant et SN S A St A A A dal S 2eg PR Ty

£t WA T e Y 3 ¥ Jumme v v -

I} S L

TEEEE A A, NS,

LA AN SRV s K DL AL N

1teq(l, Clearance(s) )
& A"f:Fileld (
(AccessMatrix(s, f, read) =>
lteq(FileSystem(£).flevel, 1))
&(AccessMatrix(s, f, write) =>
%teq(l, FileSystem(f).flevel))

=)

N"CurrentLevel(s) = 1

N"Buffer(s, read) = Nil

& N"Buffer(s, write) = Nil /* flush buffers */

@

& /* No other levels or buffers change */

A"s2:Subject, a:AccessKind
(82 "=
=> KC"(Currentlevel(s2),
Buffer(s2, a) ) )

<> [* Else, no change */
NC"(CurrentLevel) & NC"(Buffer)
)

END Toplevel
END B_L_versionl

There is an important defect to this specification. It is not
secure. There is a gaping-wide storage channel. But before
discussing the channel, and seeing how to close it, let us check
that the specification satisfies its correctness conditions.

The constraint, which says that the level of a file does not
change while the file is in use, is clearly satisfied. For, the
only transforms which can change the level of a file are Create and
Destroy. Moreover, Create produces no change if applied to a Fileld
already in use, while Destroy causes a Fileld no longer to be in
use, when it causes any change. Therefore no transform can apply to
a FileId which is in use and change the level of the file it is
attached to, while leaving the Fileld in use.

As the initial condition is the same as the criterion, we are
assured that the criterion will be true at all states accessible at
stage 0, which is to say, all states the machine can start off from.

Suppose, next, that the machine is in a state satisfying the
criterion. We want to show that its next state must also satisfy
the criterion. The criterion is a conjunction of three clauses. We
will argue that none of them can become false in the tramsition to
the next state.

Y ‘.‘_‘t.‘_ ST

5
] J“,
(4 -‘A.

&

T
) Ly
>, ¢

[ :’ﬁ

{“2"

(4 l: A
< “\
4’5

X
F
h?
'ﬂrﬁ
<
XA
P

€

AN
oy
Ll
.
A,
I'I~
5 %
.
I.v
P
By

A

MR S B4

2.
v %

o ’n ity
)

Py
2%

ar i .L = L - 41




IR N TR

The first, namely:

lteq(Currentlevel(s), Clearance(s)),

can only be affected if the transform applied is Changelevel. But
the Currentlevel of s is changed to 1 only if

lteq(l, Clearance(s)).
Thus this conjunct cannot become false.

The only transform which could make the second conjunct of the
criterion,

AccessMatrix(s, f_id, a)
=> AccessOk(s, f_id, a),

false would be GetAccess. But GetAccess makes N"AccessOk(s, f_id,
a) true only if either AccessOk(s, f_id, a) was already true, or
else AccessOk(s, f_id, a), is true. Thus the second conjunct must
also be preserved.

Finally, the third conjunct,

~ InUse(f_id) => FileSystem(f_id).fcontents = Null
& FileSystem(f_id).fowner = NoOne
& FileSystem(f_id).flevel = Syslo

is sensitive only to the transform Destroy. And destroy actually
resets the contents, owner and level associated with any Fileld it
takes out of use.

Therefore the criterion must be preserved as we pass to the
next stage. By mathematical induction, we can infer that the
criterion will be true in every accessible state.

Nevertheless, the specification is not secure. The problem is
in the variable InUse. A user currently at a high level can, in
effect, write information into InUse by creating files, that is, by
causing certain Filelds to come to be in use. These Filelds may be
assigned low security levels. Thus, a user operating at a lower
level can access the files. His success or failure in accessing one
of these files in effect allows him to read a bit of data written by
the high level user. Thus, the transform Create a’lows the high
level user to write down, into the variable InUse.

Palli® Jla g e e i i i e fin* ARt A ANt et iutalle: S gt - aiCaRE i g e




It is also possible to read up using the same channel. To
discover whether a file with a given name is in use at a higher
level, the lower level user tries to create it with his own level.
If it was not in use, he will be able to access the resulting file
If it was already in use, he will not be able to access it.

This problem, once recognized, is easily solved. In essence,
the idea is to stratify the type Fileld, so that a file identifier
will carry its own level with it. We will then be able to use the
same name at different levels without anmy conflict. We will also
treat the transform Create as an operation which both reads and
writes information. Thus, following the Bell-LaPadula principles,
we will allow the user to create a file only at his current level.
For, the level of the file must not be below the current level, as
that would amount to a write-down; nor can it be above the current
level, lest there be a read-up.

We give now those parts of the revised specification which are
not completely predictable.

Toplevel B_L_version#2

Type Sub ject,

Level,

Content,

Cont_List = List of Content

FileName, /* Just the Name */

Accesskind = (read, write),

Descriptor = Structure of (flevel : Level,

fname : FileName),
/* The real structure identifying the file */

File = Structure of (fowner : Subject,
fcontents : Cont_List )

Variable
InUse(Descriptor) : Boolean,
/* True if Descriptor is currently associated
with a real file*/

FileSystem(Descriptor) : File,

Discretion(Subject, Descriptor, Accesskind) : Boolean,
/* Indicates owner intends to allow subject
accesses of this type */

AccessMatrix(Subject, Descriptor, Accesskind) : Boolean,
/* Indicates subject has file open for accesses

of that type */

CurrentLevel(Subject) : Level,

.lll\.'

LA

-.' '; ‘,. ‘.‘.‘» .'y "t %

*y T
«

e,

..
1

ST LAY

@VNINNNN L

A

R ]

A Y

RAANNYY

V)
LY




. Ny N h Sl . . O ‘ - R A ALY N -v.-.-..- v n.--n..- s .,
..4....\. AR . ‘W\..O \~\f. ...().g,.\.. ... ' .-..\.»n.\ ‘ﬂ-\..

LR .<..-.f : LIPR ) PR AR
RO KAANIACRAOOONG ¥
- QAP g
A
-.-. X' x s % [ 0
AR AT i AR LTI . x..”.. e
NN W G : BRI A A AT
R Y RO A VU o : . PSRBT IS N Y

Ny,

el _mal) Aat
. . v

External
Accesskind

SR O

e

RN

/* StarProperty */
t, a2

AccessKind)

/* SimpleSecurity */

Cont_List
jec

-
.

)

/* DiscretionaryAccess */
/* No other changes */

Accesskind

(N"Discretionary(s2, d, a2)

.
.

/* Can”t access unused d */
Discretionary(s2, £f2, a2) )

write buffer is like his keyboard */
Descriptor)
:Descriptor)
Descriptor, a
Subject,
Descriptor)
FileSystem(d)

.
.

d
NC"(InUse(£f2),

t, d

.
.

t, d
Descriptor, s2:sub

N"Discretionary(s2, d, a2) )
/* Discretionary policy can be anything */

d

/* Subject’s read buffer is like his monitor;
jec

jec
=>

ject,

N"InUse(d) = True
& N"FileSystem(d).fowner = s

(f2 "= d

Sub
~“InUse(d)

Sub
& d.flevel = CurrentLevel(s)

& A"s2:subject, a2

Sub
& A"f2

/* The changes */

== lteq(d.flevel, CurrentLevel(s))
== lteq(Currentlevel(s), d.flevel)
& (a = read => ReadOk(s,d) )

& (a = write => WriteOk(s,d) )

Buffer(Subject ,Accesskind)
& ( Discretion (s, d, a) )

== InUse(d)

ReadOk(s
AccessOk(s
Effect (
=>

WriteOk(s
Transform Create (s

Define

ﬂ\fﬂf‘\lfm,. Py \.J“J\.Jﬁn' \-n-.hv. --“-.\)nur. ....-..f...-\!. EAONEY A ﬂ..\..-..q-.:u-n.. ® AR NN AN J. 4\-\-5 | @ I SR ST - (L LT LA



O
‘s

.00

<> /* Else no change */
NC"(InUse, FileSystem,
Discretionary)
)

There is, I think, an important lesson to be drawn from this
example: one must be careful in interpreting the significance of
the theoreme one proves about one”s specifications.

Since we succeeded in showing that the first version of our
specification satisfied the criterion and constraint, there is a
sense in which we can say that the first version was proved to
satisfy Bell and LaPadula“s model. The criterion and constraint
transcribe the Bell-LaPadula axioms. Nevertheless, this would be
misleading. When we argued that InUse and Create formed a covert
channel, we were in effect arguing that we could use them to write
information down to a lower level or to read information from a
higher level. Thus, there is also a sense in which the first
specification violated the Bell-LaPadula model.

Our proof of the criterion and the constraint established that
the Bell-LaPadula model is satisfied only under an artificial
interpretation. The proof convinces us only if we assume that every
action which amounts to '"reading" is an instance of ReadOp, and
every action which amounts to "writing" is an instance of WriteOp.
That is unrealistic. We are writing whenever we store information
in the system. We are reading whenever we recover that information.

This cautionary fable suggests that it can be difficult to tell
whether an FDM criterion and constraint really express the
correctness conditions we want them to express. This, I believe, is
an intrinsic problem with the model of correctness embodied in FDM.

LIMITS TO THE FDM MODEL OF CORRECTNESS

Although the FDM correctness paradigm is flexible, there are
definite limits to its expressive power. Design verification in FDM
means formulating one s requirements as a criterion and a
constraint, and then proving from the specification that they will
always be true in any accessible state. This is a somewhat
specialized notion of correctness.

54

[l
PRI

l\'.
e
\
A

q’!

;
-

'~
"l

L}
'l
e

AR
LN
o l.;’\

O
A RARAR)
AL
AN
. ‘(‘:":'.v .

LA AL

v A

Y

.9 I.l.‘l.‘l
'. ‘\
IR

)
PPNV
batrets

Ly

“
‘l
Ta s e v

XY ¥
)

P
2
2%

A, A
ety
‘7

.}"’L’Ll.‘ 4

Ry

-' .

A s
PRI
.'.‘.‘n"v:‘

:v v":'_‘ -~ ]
Il i ,l' ...'5 ~ r
(NS

PR



LAY

-_
~ F AP v

P ANIAYS |

»
.

CaPd

X -‘J 0% '.; K

I

AERE AN
s
e

st
LI

A A 4B

RREERRA

[ AAA A

-

u

DM YA S AKL S E I AL NS AV N e s N A C R I E N A AE R At b b i Db Lt

The logical form of the statement that a specification is
correct is:

(c) For every state S the system can ever enter,
and every operation T,

A. S satisfies the Criterion, and

B. S, together with the state which results when
we apply T to S, satisfies the Constraint.

This means that it makes sense to partition the individual states
into two classes, good states and bad states, where we count a state
sl as good if (C) holds for the particular state sl. Correctness
means that every state the system can ever enter will be a good
state. The FDM correctness theorems say in essence that every
accessible state is good. There is no a priori reason to think that
this is the only notion of correctness that we might want. Moreover
there actually are cases where we want to use a notion of
correctness quite different in form.

One rather different conception is the isolation model, which,
although it was suggested at SRI, was never integrated into HDM.
The SRI idea [Goguen and Meseguer, 1982, 1984], in brief, is that
the machine will receive a stream of commands, each command having a
security level attached. If s is a stream of commands, and 1 is a
security level, let”s say that another sequence of commands t
"sanitizes s at level 1" if t contains just those commands from s
which have levels less than or equal to 1. The system will count as
secure if, for each stream s and security level 1, the output of the
commands of level 1 is the same whether they are submitted in the
stream of commands s or in its sanitization t. In other words, what
the system does with the commands of level 1 does not depend on
vhether any higher level commands have been executed or not.

While this model of security is simple and plausible, it is not
expressible in the FDM paradigm. For, correctness in the FDM sense
means that every state that the machine can ever enter will satisfy
a criterion and a constraint. Correctness in the sense of the SRI
model has a different logical form. It asserts something about
every stream of commands, and does not discuss the individual states
that the machine enters.

Thus FDM has "wired in" a particular interpretation of
correctness, which is by no means the only one which might interest

us'

RIS M R A S A7 A R DAt gl -t 2

Awd

.« oo
S e
AAS LSS

1%
b
IE?‘.'-;

DA ALY
(S
/7

A ALY
POIMMNY
ata
E S,
» %
e

f.'..
Vil

'-'r"-,
5.‘

.
[. ‘.'.-“,-. .‘{‘:

Ay
SR
] V.
<y ‘{
.. .(':
ﬁ. F A
LI
_ (S




l.l"l.l 'A“.

..
RERRR N

Y ‘.‘-

P A A g
e e

P AL AR

’

‘LR RN A

Moreover, it is not exactly the notion of correctness we want

for applications to computer security.

FDM does not give us a way

of asserting that a specification allows only secure information
flows. Information flow analysis on FDM specifications has not

always been done, for this very reason.
tion flow analysis was done for KVM, and that was not done by SDC at
all, but at MITRE, using a MITRE-developed FDM information flow tool

[Huff, 1981; Kramer, 1981, 1982].
information flow tool would not have been necessary had FDM been
able to express the correctness conditions which are our primary

concern.

Only a tentative informa-

However, this special-purpose

HDM is really in the same situation as FDM, at least from this
The correctness paradigm of HDM is also oriented
toward dividing the possible states of an abstract machine into
acceptable and unacceptable classes, and proving that the machine

point of view.

will never enter a state in the unacceptable class.

The developers

of HDM found it necessary to build a special, add-on, information
flow tool, to test whether HDM specifications meet their require-

ments. This flow tool, while quite useful, is nevertheless inflexi-

ble. The security policy it enforces is built into the software
itself, and is not stated as an explicit part of the specification.

This problem, which is apparently intrinsic to flow tools, certainly
affects the MITRE Ina Jo flow tool also.

For this reason,

information-flow tools represent only an interim solution in the
search for expressive specification/verification systems.

56

I- ’
AN _?j
o, RS o
s ': .5:
X AP,
-._..{..-,:'.:s’ st
MO AN AT A
SRR AL SRR
PR A : LN .,f
[ ® q
SR RN AR
~ '_\‘\_ﬁ. :
‘i i

K '.'~ »
o'y

5



s “.n,

PR i W

Ll e

@

Sy

s

a"s a7 B8

SECTION 5

MULTI-LEVEL SPECIFICATIONS

INTRODUCTORY

An important element of the FDM paradigm, although it is
perhaps over-emphasized by the developers, is the idea of
hierarchical levels of description. Because a specification for a
complex system does not leap fully formed from the brow of the
designer, like Athena from the brow of Zeus, one of the leading
ideas in the development of FDM was to allow the designer to begin
working with highly partial specifications. An iterable process
would lead from a "system sketch"” to a more complete overview of the
operations available in the final machine, and a more detailed
representation of the data structures they will work on.

There are a number of advantages to this incremental
development. First comes the fact that the partial sketch can be
subjected to discussion and critical evaluation at an early stage in
the design process. This allows the designer to build a consensus
that his design offers the right functionality, allowing him to
canvass all the alternative approaches at an early stage, before the
effort he has already expended makes him unsympathetic to them.
Second, the sketches remain valuable at all stages of the
development process, as they provide a layered picture of the system
being designed. They introduce the main outlines before the
details, and illuminating details before more trivial ones. The
layered development process encourages the designer to build up the
system in a rational way, and helps others to understand its
structure.

A third type of advantage makes life easier for the theorem
prover, as well as for the human beings. The developers of FDM
intend us to prove the theorems guaranteeing the correctness of the
specifications in stages, corresponding to the layers in the
specification. We prove, to begin with, that what appears in the
top layer satisfies the system requirements. We must prove, of each
successive layer, both that it is faithful to its predecessors,
preserving their adherence to the system requirements, and also that
any new operations it adds also satisfy the system requirements.
Instead of handing the theorem prover one enormous theorem to
establish, we can give it a sequence of more moderate sized claims.
This is an important consideration in any system. It becomes an
overriding issue in FDM, as the theorems generated by the Ina Jo
language processor are already too large in many cases, & problem to
which we will return.

57

Ny

LA

I!
. .
‘!A!A.'_ﬁ.fs.s_\ N

’, '@
XA
N .
StOnAde
O
‘.“'l G NN S

I
vh

,{.
v,
l"
ASEY v‘.ﬂ
e
rf

£

A

SRR
\-.xsgpfq.

Clr

PR

r o vg
. g"'

»

v

PPN

.
P
3
T
s
e
A Ay
s
5y Yy Yy
¢

1

.
L
[N NNy WA
5
)
£y
L't

RER
-1 .I

."‘l‘{{'

1
»
13

b
'
&

7
X

F ]
e
X

XAAsAd
£,
iy .
f%};f.:w‘k'
S
Y

I}

A
A
¢

.

2

XA,
XAd
4

h 2

1)

.!

P2
|

3
v 7

» -_..UN‘:‘}
A e
[ "‘"‘J

PR

Bk
rid
i
“y

AR Ay

» ",
l‘l.

s

»



L W AAEN

o)

B T
rd

PR AL
PN NS

.'{. 7

A

A-- -
L L ANNA0,

e

LU BN

. .’lt-. Sl

P
2200

PN

v e e ’
-‘. t‘\{\l ~o ..l ~' . s ~ .".' ~\'-l‘ :' .'- .

R PO - RS ACIL DN AL O S A ot e e N

An Ina Jo specification consists of a sequence of "levels”.
The top level contains transforms describing only the most important
operations of the final machine. These transforms may be highly
nondeterministic, giving only an abstract view of the effect of the
operations. Moreover, the variables and constants appearing at the
top layer will belong to abstract types, often constructed as sets
or sequences from unspecified base types. Each level (except the
last) is connected to its successor by a "mapping". A mapping is a
correlation between expressions of the upper or "parent" level and
expressions of the lower, "child level".

In the discussions which follow, I will not generally talk
about more than two levels. I will simply speak of an upper level
and a lower level. The reader should keep in mind that the upper
level need not be the top level of the whole multi-level
specification, nor need the lower level be at the bottom. It will
be enough to describe what goes on in any link along the chain from
top to bottom.

Each name for a type on the parent level must be matched up
with a type on the lower level. Each parent level variable must be

matched up with an expression on the lower level, which "represents"

the variable in terms of one or more lower level variables.
Similarly for upper level constants and transforms.

CONTINUING OUR EXAMPLE: MAPPING TYPES, CONSTANTS AND VARIABLES

Let us look at one way of giving a second level for the

calendar example of Chapter III. First, we may want to add a little

more structure to the data types:

STITLE Cal

SPECIFICATION CalendarKeeper

LEVEL ToplLevel

[*%* The Example of Section 3 would be placed here ***/
END TopLevel

LEVEL SecondLevel UNDER TopLevel

Type Person,
Group = Set of Person,

ChString, /* For displaying info to user */
Message = List of ChString,

58

[.

N Yy
I
AR

A2 BN
o Pt

» (K
l’" SN AE N
G Rt

ST
o) W Ty

PO

>

.-
" et
@

: PRV RVRN e AN

S SR R 4

- i




'.n.'.‘.'.'.‘;"

-~
.4

AakSN

‘ -‘. ..V.

e

SANANN]

.-

DAhIENONC

anhNAs

A TV P ata”

Date,

Time,

Occasion = Structure of
(WhatTime = Time,
WhatDay = Date ),

Appointment = Structure of
(Who = Group,
When = Occasion),

CalendarType = Set of Appointment

Person == Person,
DateAndTime == Occasion,
Appointment == Appointment

We have expanded DateAndTime into a structure which contains both a
date and a time, and we have added the types ChString and Message so
that we can specify some replies to the user.

We will also need some function constants and a few character
string constants.

Constant
/* weak linear orders */
Led (Date, Date) : Boolean,
Let (Time, Time) : Boolean,

/* functions to write messages */
WriteTime(Time) : ChString,
WriteDate(Date) : ChString,

WriteName (Person) : ChString,
WriteAppointment (Appointment) : ChString,

/* some important expressions */
disengaged, uninvited,
cancelled, nonexistent, OK, impossible : ChString

Axiom
/* Led is a weak linear ordering */
A"d1,d2,d3:Date (Led (dl, dl)
& ( ( Led (dl, d2) & Led (d2, dl) ) => dl = d2)
& ( ( Led (dl, d2) & Led (d2, d3) ) => Led (dl, d3) )
& ( Led (dl, d2) | Led (d2, d1) ) )

59

v’ .: - [

e

[y

'If

o

\t.-

P L T A S
N

P




P
¢
»

i
’
»
&
»
'

LT ..,
L/ N ‘:’._c’

TR

L AR
bR R

b3

/* Let is a weak linear ordering */
& A"t1,t2,t3:Time (Let (tl1, tl)
& ( ( Let (tl, t2) & Let (t2, tl) ) => tl = t2)
& ( ( Let (tl, t2) & Let (t2, t3) ) => Let (tl, t3) )

»
’

2

TR L

& ( Let (tl, t2) | Let (t2, tl) ) ) : oA
a8 - SN
oY [**kkk Ye could also require that the "write" */ v -
- /* functions are one-to-one. In practice, */ ,

;j /* they must be, so that output information */ e
p /* is unambiguous. Fkdkdkekk /

Iy
7

Define

'y

Busy(p:Person, o:0ccasion) : Boolean

== E"a:Appointment
(a <: Calendar & p <: a.Who & o = a.When),

/* weak ordering on occasions */
Leo (0l:0ccasion, 02:0ccasion) : Boolean

== (  ol.WhatDay = 02.WhatDay
& Let(ol.WhatTime , 02.WhatTime) )

/* Earlier same day */ 3?}:}3}}:?}i
BTSN

| ( ol.WhatDay ~= 02.WhatDay f:j:j:’:f:it
& Led(ol.WhatDay, o02.WhatDay) ) NN
/* Previous day */ :f\%\fs.\f A

, ® .

Using these constants and definitions, we can give the mapping of
the upper level constant.

Map

Le(dl, d2) == Leo (dl, d2)

What type does the variable dl range over? Since Le is declared in
the upper level:

Constant
Le (DateAndTime, DateAndTime): Boolean,

the variable dl must be ranging over the type DateAndTime. But
since Leo is defined

Leo (ol:0Occasion, 02:0ccasion) : Boolean == ... ,

dl also has to have the type Occasion. That is tu say, the mapping

DateAndTime == Occasion

R R L BN
' A'-L'.\(' Lo de Lol




identifies the two types: from the point of view of the lower
level, "DateAndTime" is just an alternate name for the very same
type also denoted by "Occasion". The mapping causes the upper level
typename and the lower level typename to be synonymous.

Our lower level specification will have an extra variable,
Reply. In an implementation of the specification, Reply would
appear as an output routine. It is curious that a variable can be
implemented as a routine. It makes sense in this case only because
Reply is a "write-only variable". The effect of an operation never
depends on the value that Reply had when the operation was applied.

Variable
Calendar : CalendarType,

Reply : Message,
Present : Occasion

Calendar == Calendar,
Present == Present

RULES FOR MAPPING TYPES, CONSTANTS, AND VARIABLES

There are a few restrictions which mappings must obey in order

4 .
to make sense. We will sketch them out in order to clarify the way {f&“fngggx{g:
mappings work. ,:gyf}ﬁgﬁh;},

PG ‘.: \.:,'..:,‘.:,:.: ‘
A type mapping associates a type of the higher level with a - -;}?;T;}::}
type at the lower level. The lower-level type must be declared. ERASOE LGN N

The mapping causes the upper-level type to be identified with the
lower-level type. For instance, an equation between a variable
ranging over the higher~level type and a variable ranging over the
lower-level makes sense. The upper-level type is just a sketchy
description of the lower-level type.

The two predefined types Boolean and Integer are never mapped,
because the Ina Jo language processor always maps them to
themselves. At the other extreme, a completely unspecified type can
be mapped to any type at the lower level. In between the two
extremes, there are a few simple, intuitive rules.

An enumerated type may be mapped to another enumerated type
with the same number of elements, or else to & set contezining that
number of successive integers.

61




vy v

e

TaTaTATA A

3 [ - -
LPAPAPOPS PLPLN

AT ER

L e
LIRS L N Y

.
-

‘e W

AN Y

WA AR, B SR S
\-';')"r

i
A

Dt ]

If two upper-level types are synonymous, they should be mapped
to synonymous lower-level types, or to the same type. If a type is
constructed from some base types using "Set of", "><" (Cartesian
product), or the other devices for building up complex types, then
its image should be constructed from the images of the base types in
the same way.

If one upper-level type is a subtype of second, its image under
the mapping should be a subtype of the image of the second. If the
subtype is defined using the T" operator -- say, as T"x:BaseType
(P(x)), then its image should contain just those objects in the
image of the base type which satisfy the translation of P. This
last condition depends on how the constants of the upper level are
mapped to the lower level.

The mappings of variables and constants work in similar ways.
The mapping of a variable or constant must match the mappings of the
types. A typical variable or constant has parameters, possibly of
various types, and yields values of some type. Its declaration
therefore looks like:

sam(typel, ..., typen) : type0

Suppose that the upper-level types type0, typel, ..., typen are
mapped to the lower-level types 1t0, 1ltl, ..., ltn. Then sam should
be mapped to some expression in the vocabulary of the lower level
which, when applied to objects of types ltl, ..., ltn, has a value
of type 1t0. Ina Jo expresses this in the form:

sam(xl, ..., xn) == expr,

where expr is some expression containing x1, ..., xn. Expr must
make sense when the variables are construed as ranging over types
1tl, ..., 1ltn respectively, and have a value in 1t0. There is only
one difference between variable mappings and constant mappings. In
a constant mapping, expr cam contain only constants of the lower
level; state variables are not allowed. In a variable map, state
variables of the lower level can also appear. The N" operator
cannot occur in either case, nor can a transform of the lower level.

For instance, suppose the upper level of a specification, like
our Bell-LaPadula file system, has a variable:

AccesgMatrix(Subject, Fileld, Accesskind) : Boolean.
Suppose also that we are mapping the top level to a lower level in
which there is an access control list associated with each file

descriptor. The access control list keeps track of which users are

62

'
)

%

. ..

[ A R A S
.
s

Y Pty
[he) %t'
& : Y

e

~ »~ Y
AN ¥
et rtf_atw

LA RAS




TEERE . ee & om ot oo . Ce——. s a8 % e - e e w a———

currently allowed different kinds of access to the file.

the lower level, we have:

Type . . .

ACL_Entry = Subject >< Accesskind

Variable

ACL(Fileld) : Set of ACL_Emtry

Thus, at

We would want to map AccessMatrix down to the lower level by

stipulating:

AccessMatrix(s, £, a) == (s, a) <: ACL(f).

CONTINUING OUR EXAMPLE: MAPPING TRANSFORMS

An upper-level transform, say Do_Something(x, y), is mapped

using a stipulation of the form:

Do_Something(x, y) == expr,

where expr may contain x and y, as well as state variables
lower level. The N" operator is allowed to occur in expr,
the names of transforms defined on the lower level.
see, a lower-level transform name occurring in expr stands

of the

as are
shall
for the

conjunction of its refcond and its effects section (augmented by

no-change statements covering unmentioned variables).

With the new Reply variable in our example, we can write a much
more detailed specification. In the top level version, there was no
way to indicate that, say, an attempted addition to the calendar had

failed because one or more of the participants were already busy.

Thus, we gave the transform Adjoin a refcond stating that all of the
participants were free. With the Reply variable we can rewrite the

transform to act conditionally. If all of the participants are
free, the appointment is added and confirmed in a Reply, while if
some of the participants are busy the appointment is not added and

the user is warned inm the reply. This is an example of our strategy
of replacing refconds by conditionals whenever possible.

Note that the next three transforms are not marked External.

This means that they are internal transforms.

0ddly enough, an

internal transform should not be thought of, all on its own, as

describing an operation in an abstract machine.

Rather, the

internal transforms give us a convenient way of expressing the

- _‘A)_.-A-A..lh.l‘

'
L]
L]

(J
N

.

.
s

s
v &
DO )
'+
L Y
L4 NNy
‘l
..

4

b ]
o
v
..

"‘
2

[
o

g

'l
[N

PR
4

w
b
e
A A
H [ 4
L)
by

=

O'Il 1} .

()
.

v Yo fa s e




A
R

-
o

-
[SEAAEN

oo o
L A Y]

r.
r
L

LA

A Y
ES

Yl
'

,
e

® N
O

1]
o
-

[ |
.
. .

LN

5;¥P.”“1,.¢.}

-
.
r

-
o

Lol
YA YA

SRR o4

mappings which carry upper-level transforms down into the vocabulary
of the lower level. The "real" transforms -- those which describe
the operations of an abstract machine -~ are not the internal
transforms, but the higher-level transforms mapped down in terms of
the internal transforms. Or at least this is so assuming that the
upper-level transforms are external, rather than being internal
transforms used in mapping down some still higher level of the
specification.

Transform Update(Now : Occasion)

Refcond Leo(Present, Now)
Effect N"Present = Now
& N"Calendar = S"a:Appointment
(a <: Calendar & Leo(Now, a.When) )

/******************************[

Transform AddAppointment( a : Appointment)

Effect (A" p : Person (p <: a.Who => “Busy(p, a.When ) )
=)
N"Calendar = Calendar (| §"( a )
& N"Reply = L"( WriteAppointment (a), OK)
<>
N"Calendar = Calendar
& N"Reply = L"( impossible ) )

[ FR xRk kkkkkkkkkkkkkkkkkhkdhkkk |
Transform CancelAppointment{ a : Appointment)

Effect ( a <: Calendar

=>
(N"Calendar = Calendar ~~ 8"( a )
&
N"Reply = L"(WriteAppointment (a), cancelled) )
<>
(NC"(Calendar)
&

N"Reply = L"(WriteAppointment (a), nonexistent) )

We can also add transforms for other useful operations to the
lower level. For instance, the calendar will be more useful if it is
possible to read off one’s appointments for the day.

64

PR TN
P e e

»
o

S 4
A

I
4

-
PN

.V

LA
1
!
7 e

sI

"
2
"

)
f

2
'y
N
F

o s
D
‘

3
r
D

AN
o /7
h]

"5
o
-l.."'&
JeL
s
B
A
P. a

Y
$

»

~ =t
LN L
o
al o bnd



P ey

P

N R

A
U -,
Transform FindAppts (p : Person, d : Date) External = /- {J "
NG
[ R
Effect A"a:Appointment o .:_::,.' A
( (p <: a.Who & d = a.When.WhatDay) LA

<> o e
E"n:integer
(WriteAppointment (a) = N"Reply.n)
)

Cr I
P

Given a group, we may want to find the earliest time when all the -
members are free. We may also want to allow an individual to cancel '
his participation in a meeting.

Transform FindTime{ g : Group ) External

Effect E"0:0ccasion

(N"Reply = L"(WriteTime(o.WhatTime),
WriteDate(o.WhatDay))

&

&A"p: Person (p <: g => “Busy(p, o) )

A"02:0ccasion

( A"p: Person (p <: g => ~Busy(p, 02) )
=>
Leo(o, 02) )
)

Transform Disengage (p: Person, a: Appointment) External

Effect
(p <: a.Who
=>
N"Calendar = (Calendar ~~ S"(a) )
Il 8"( (a.Who ~~ s"(p), a.When ) )
& N"Reply = L"(WriteName(p),
disengaged, WriteAppointment(a) )
<
NC"(Calendar)
& N'"Reply = L"(WriteName(p),
uninvited, WriteAppointment(a) ) )

More importantly, we must say how to interpret the upper-level
transforms in the vocabulary of the lower level. For this we use
the internal transforms.

Map
UpdatePresent(Now) == Update(Now),
Adjoin(a) == A"p:Person




)

P

N

AR ANA LS

N OXAN N

T
LY N

AN
AL

e

.
»
0

Ll BN
-%.;U/.

‘! . '.":('r('r

. ‘(.\Tﬁ

" g "pha A¥a- . . S
LS A VA A ] LR R SSTRIR T A T RN A A A VL Pl [N I 0 [ 0 G NG

(p <: a.Who => “Busy(p, a.When) )
& AddAppointment (a),
Remove(a) == a <: Calendar &
CancelAppointment (a)
END SecondLevel
END CalendarKeeper

What do these mappings mean? An Ina Jo mapping associates an
upper-level transform with an expression on the lower level. The
lower-level expression must ensure both that the refcond of the
upper-level transform is true and that its effect is accomplished.

For instance, since the refcond of Adjoin is
A"p:Person (p <: a.Who => “Busy(p, a.When) ),

the first clause in the mapping expression for Adjoin ensures that
the refcond is true. When we translate the refcond into the
terminology of the lower level, we get the clause itself.

But how does the mapping expression ensure that the effect of
Adjoin is accomplished? Note that AddAppointment must not be
understood as an instruction: Ina Jo is a descriptive language
rather than a procedural language. It has no comstructs expressing
instructions. Rather, AddAppointment 8erves as an abbreviation for
the conjunction of its refcond (which is vacuously true) and its
effects section, supplemented by no-change assertions for variables
not mentioned. Hence, the mapping expression is entirely equivalent
to:

A"p:Person (p <: a.Who => “Busy(p, a.When) )
& true
& (A" p : Person (p <: a.Who
=> “Busy(p, (a.When.WhatTime,
a.When.WhatDay) ) )
=)
N'"Calendar = Calendar
Il s"( (a.Who,
(a.When.VhatTime, a.When.WhatDay)) )
& N"Reply = L"( WriteAppointment
(a.Who, (a.When.WhatTime, a.When.WhatDay)), OK)
<>
N"Calendar = Calendar
& N"Reply = L"( impossible ) )

& NC"(Present)

66

o, .

. L
AR Ay
AT ‘Cs.'f._

LA
P s
-':

.
R .‘. o ".:‘.:'. .'.'\'
o
'

e -
[
50T

,
/
.
3 J
,
P2
A

»
P A4

v H
&
NAA Y

/-"
op
»

4

/
)l

vl

& o &4, 5
LLL
4 A
B
S %A
o, L
Jolelol
LA A

oY 5
.
A
’5 &
DS
b
P
‘.1’

LAWY NPy
' 2
2



A"p:Person (p <: a.Who =>

& NC"(Present)

THE MEANING OF MAPPINGS

Using propositional logic and the type declarations for Occasion and
Appointment, we can simplify this to:

“Busy(p, a.When) )
& N"Calendar = Calendar || 8"( a )

& N"Reply = L"( WriteAppointment (a), OK)

The Effects section of Adjoin, which is:
N"Calendar = Calendar || $"(a),

with NC"(Present) implicit, is thus a consequence of the mapping
expression in the most straightforward way. The mapping for the
variable Calendar turns the Effects section into a logical
consequence of the lower-level expression.

To repeat the point: a mapping expression in Ina Jo has no
procedural meaning at all. All it has to do is to imply the refcond
and the effects gsection of the transform being mapped.

Because the links between levels are logical rather than
procedural, the Ina Jo level mechanism has a rather distinctive
flavor. Ina Jo levels are not necessarily what one would expect,
being, for instance, very different from the levels in the HDM
paradigm. In HDM, implementation forges the link between operations
in the upper and lower levels of a specification. A program in a

standard programming language calling

lower-level transforms -~- HDM

calls them OFUNs -~ furnishes a "definition" of an upper-level OFUN
in lower-level terms. The mapping gives a procedure which carries
out the upper level operatiom by calling various lower-level

operations as subroutines.

The uninitiated sometimes expect
way. But it should now be clear that
Ina Jo mapping does not implement the
It gives us an expression, couched in
level. If we manage -- by hook or by

Ina Jo levels to work the same
they are quite different. An
upper-level transform at all.
the terminology of the lower
crook ~- to make this

expression true, we will have made the refcond and effect section of

the upper-level transform true.

67

S ALl

%

«

o

LIRLJRLI TS
'
Y
- +

B

e Y, -!
.

0

L Y

CAN
R

oy
53
2;

a5

xN
N
A
hl.

.o
fl'- N
P LR
[N .,
/‘lr' /..

4
P
H 4N

r

AL

X3

/
PO

LA S

I:’,
[

s
«te'a

2
ey

L3
A
S

N S
U
)

L]
»
[

"‘.
F s
pLeas
Y

4' .lq R . .
Ol S

.

PR
IA. ._‘ LN &

Po®s®,

B




This is a purely descriptive or truth-conditional notion of
mapping. The mapping provides us with a way of translating the log-
ical descriptions of the upper-level transforms into the language of
4 the lower level. The result of the translation is a logical for-
mula, couched in lower-level terms. Any state transition caused by
the upper-level transform must satisfy the formula.

The FDM notion of mapping has an advantage over the HDM inter-
level structure, but it also has a disadvantage. The advantage is
that it makes it simpler to define when a mapping is correct. This
enabled SDC to write software, included in the Ina Jo language pro-
cessor, which generates target theorems to test the correctness of
mappings. The disadvantage is that the non-procedural approach to
mappings is less useful.

The non-procedural approach means that the successive levels of
a specification, rather than representing a progression from an ini-
tial statement of requirements toward an implementation, are
increasingly detailed descriptions at the same logical level. Thus
in the process of refining a specification, one does not introduce
strategies for transforming the specification into a program. One
postpones all issues concerning the structuring of the program
itself until the last acage, when one must leap the gulf between the
specification, which 1s purely non-procedural, and the runnable pro-
gram. Research done by the MITRE Corporation and Odyssey Research
Associates [Project 4030, 1985; Platek, 1985] suggests that this
issue makes the Ina Jo approach less useful than its alternatives.

The advantage of the Ina Jo inter-level structure is that it is
much easier to provide a semantical interpretation of the mappings.
In the remainder of this section, I will sketch out the semantics of
Ina Jo mappings, discussing the theorems needed to guarantee the
correctness of a mapping.

The discussion can be divided into two parts, because one can
introduce two different kinds of change in passing from one level to
another. First, one can increase the degree of detail in the
description of transforms already present at the upper level. This
may involve specifying previously unspecified types, adding con-
stants, introducing more concrete data representations for the state
variables, and refining the effects sections of transforms. 1In
order to refine the effects sections of upper level transforms, we
may want to introduce new internal transforms. The correctness of a
mapping which introduces only these sorts of change consists in its
fidelity to the decisions which have already been specified at the
upper level. The correctness conditions -- criterion and constraint
-- specified at the top level will be satisfied automatically at the
lower level, assuming only that they were satisfied at the upper

68

. R
R A S R R R P
e e e e

-“‘9:—-;:"‘2"*‘ "
A Y
NI

»
»

Vi) “'-.‘:l'{u &

e
‘

LY

LSRN

\

!
/.,

AR
!
A
l‘ l.

5

-
3

{0
v e Y

Ay
(et} } 'l
PN
' Pl o)
20
oAy
l'.'l
R
P

-
¥

*
".'l.‘w

‘;l
sl
ol
“I’

&
e
R _‘IO.‘

'



PxEIL)

A level and that the mappings are faithful to the static and dynamic
p parts of the upper-level specification. Let us call a mapping a
refinement if it introduces only this sort of change.

, One can also -- second -- introduce altogether new transforms,
. by which I mean new external transforms, describing real operations
N of an abstract machine. These transforms specify operations which
. did not exist in the machines satisfying the upper-level specifica-
N tion. If we map an upper level to a lower level which has newly

added transforms, then we must check that the additional transforms
obey the criterion and constraint formulated at the upper level.
. This is quite different from the checks assuring correctness of the
: refined detail a mapping may introduce. It corresponds, instead, to
the theorems we prove to assure single-level correctness. Let us
speak of an extension when we add new external transforms.

It is legitimate to separate out these two elements in the Ina
Jo paradigm for levels. For, we can split each mapping into a pure
refinement followed by a pure extension. They are independent
parts of the mapping process. To split apart the two halves, we
simply group together any new external transforms that may appear in
the lower level. The remaining part of the lower level amounts to a
X pure refinement; adding in the external transforms is a pure exten-

sion.

AN

Now, the conditions for the correctness of an exteusion are
familiar. Namely, we must prove that the newly introduced
transforms preserve the criterion and the constraint from the upper
level. Thus, for each newly introduced external transform T, we
want to prove:

Map(Criterion) & T => Map(N"Criterion)
and
Map(Criterion) & T => Map(Constraint).

I am using the notation "Map(expr)" to indicate the expression in
the lower level vocabulary which we get from expr by applying the
translation given in the mapping. We could also add a lower-level
invariant to these theorems to get a slighly more general form,
closer to the form given in the preceding chapter. Note that it
then becomes necessary to prove that the lower-level invariant is at
. least as strong as the mapped version of the upper-level invariant.

i
.

03

v
\J‘
>

'y
AR

P PP
&

XY

o

=

\-'s

\l" «
AR

| 33
NN
. .‘i |
.
1 .,
N

n“
ay
»
A
»

Y

RATUR
e,
',

%

R

. ERANN

« CREA
VX

o F

o 4 4
LA AT

A Y
‘_\u’_ F A AN

|
Caleta

LU A

»

’ . [ "l\.'l

»

Ay A 4

A&

" .\.

5

SRR LS

plele s

:,:.v '}:
W

S

AN S

.I .l
- I‘

MY NN
NN



THE FIDELITY OF REFINEMENTS

Simply put, a refinement is faithful if every implementation of
the lower level of the specification is an implementation of the
upper level. When this is true, we can infer that the lower level
specifies, possibly in more stringent detail, the same kind of
system the upper level did. In particular, proofs we carried out to
ensure that the transforms of the upper level preserve the criteriom
and constraint will carry over to the lower level. If any machine
implementing the lower level could enter a state falsifying the
criterion or constraint, then that same machine would implement the
upper level and falsify the correctness conditions. The theorems
ensure that this cannot happen.

In fact, however, there is a certain amount of purely logical
work to be done to work out rigorously this underlying idea. It is
not quite the same machine which satisfies the two levels. Rather,
given any machine satisfying the lower level, we can construct a
very similar machine satisfying the upper level. Let us see what
this means, using our distinction between the static and dynamic
parts of a specification.

If a mapping is to be faithful, then any structure satisfying

the lower level should almost satisfy the upper level. The only
hitches we should permit are the following. First, the lower level
may have new types in addition to the ones which serve as targets
for upper-level types under the mapping. The structure will have
sorts of object to interpret these additional types. We may ignore
these extraneous sorts when we consider the structure as an
interpretation of the upper level. Second, individual constants and
function constants belonging to the upper-level may be mapped to
complex expressions in the lower level. In this case, we should
think of the lower-~level structure as equipped with the
distinguished objects and functions which these complex expressions
define. For instance, in our Calendar example, the ordering
relation on the upper level was mapped to a complex expression on
the lower level,

Lt(tl, t2) == Leo(tl, t2) & t1 "= t2,
where Leo itself had a complex definition:

Leo (0l:0ccasion, 02:0ccasion) : Boolean ==
(ol .WhatDay = 02.WhatDay
& Let(ol.WhatTime , 02.WhatTime) )
| (ol.WhatDay ~= o02.WhatDay
& Led(ol.WhatDay, o02.WhatDay) ).

LS

Ve :l.'_s




v

R w s W

Naturally, if a sort of object interprets the lower level type tl,
and our mapping carries the upper-level type tu to tl, then the sort
must interpret tu. These remarks indicate in what sense the
structure for the lower level is "almost" a structure for the upper
level.

Now what theorems about the mapping will ensure that every
lower-level structure is almost an upper-level structure? Or put
the other way round, what problems could prevent the lower-level
structure from being almost an upper-level structure?

Assuming, of course, that the mapping satisfies the type
compatibility considerations mentioned in Section 3, only the axioms
can make problems. We have to make sure that the axioms of the
upper level will turn out true in every structure satisfying the
lower level. To do so, we must rewrite the upper-level axioms in
the vocabulary of the lower level, using the mappings. Moreover, we
must prove that the axioms on the lower level entsil that the
(rewritten versions of the) upper-level axioms are true.

Unfortunately, the Ina Jo language processor does not generate
these theorems. This is one of the underlying flaws in the current
implementation of the Ina Jo inter-level mechanism. Therefore, any
user who relies seri.usly on multi-level specifications in FDM
should make sure that he formulates these theorems by hand, and
proves them himself. Without these theorems, there is no assurance
whatever that a multi-level design is correct.

Luckily, the Ina Jo processor does better with the dynamic part
of a specification; here it at least generates the correct theorems.
Let us see what the correct theorems are, by going back to
semantics.

What sort of a machine will satisfy the lower level of a pure
refinement? The criteria for its underlying structure are just the
same as for any other machine: the underlying structure must
satisfy the static part of the level. Similarly, the state
variables of the machine, and the initial state, relate to the
variables and initial condition of the specification in the usual
wvay.

However, since the lower level of a pure refinement has no
external transforms, we must say something about the operations of
the machine. It should have an operation for each external
transform from a higher level which gets mapped down. They contain
the state changes that are envisaged by the specifler. Yet, the

operations in a machine which satisfies the lower level must satisfy

the conditions stated in the mapping expression. Thus in our

RIS R i SRS T A A B A I DAL I - S0n0l S0 i Se Yt AN NadR A

A
o

.‘,-'~
\‘:-,a"t
DS
Sl
AN
.-‘.$!~
> T
4@ » "
et m W, ey e
NS CARUL G
G AL NS A .
AAYAS LR AL AL B AN
-, LGN AL A
LSS Y
PSR A S s
N T N
e W P
sy \.‘, "
A S A5

P "t - Y

% ) - h) ‘_.

F.._-) ., .J.'-.._"-. R
- e Ve ¢ \' (e

;~\A’;‘\‘ Wl

.-\ ‘

)

oy



SN T W ¥ A

s

.
«
.
o
.
o
[
o
.
.
.
r
.
.
[ 4
»
-
»
»
f

-
y
N
\l
Y
N
.
v
;; Calendar Keeper, we want a machine satisfying the lower level to
A have an operation corresponding to the Adjoin transform of the upper
;; level. But since the mapping is
)
:. Adjoin(a) == A"p:Person
- (p <: a.Who => “Busy(p, a.When) )
L & AddAppointment (a.Who,
- a.When.WhatTime, a.When.WhatDay )
- This, in turn, expanded and simplified, became:
A
] A"p:Person (p <: a.Who => i
o ~Busy(p, a.When) ) -
N b
\: -J:\
. & N"Calendar = SR
: Calendar || s"( a ) *
o & N"Reply = L"( WriteAppointment (a), OK)
~ & NC"(Present)
N
This is the specification that the operation should fulfil.
o This machine may have state variables which are mentioned only
- at the lower level, not at the upper level. To transmute the NN
- machine for the lower level into a machine for the upper level, we W
- may have to "throw away" these extra state variables. That is, we s ad
. define the operations of the new machine so that their result does ®
~ not depend on the values of the additional state variables. T "{1
- AT NS A
e Let us say that a state s, involving only the variables of the f\ PO {\?
M new machine, contracts 8”, involving all the variables of the Ny S :H
" lower-level machine, if s and 8” agree on all the variables which ORI O
are in the new machine. Then we can define the (generally non- I SN
X deterministic) operation O of the new machine, corresponding to an
- operation 0° belonging to the lower-level machine, as follows.
The state t is a possible next state for the machine, when O is
applied in state s with parameters pl ... pn, just in case there are
states 8” and t°, such that 8 and t° contract to s and t
7 respectively, and t” is a possible next state when 0° is applied to
' pl ... pn in state 8°. If M is a machine for the lower level, then
A the machine we get by applying this definition to all operations 0~
< in M” can be called M.
The form of this definition means that M will often be
i’ nondeterministic even when M” is deterministic: the choice of
V) different values of s may lead to different possible next states.
4
Y 72
4
J

LA
Al A

-y
«



. ;
P A Y 4y

i A‘,:’l :,I."Q: X &

A

SAAS

NS N

]
“

[y

a l“ A'.l *

ﬁ -“ l" ‘i

s
»

S

F I R R VN

s

. S, ,;‘ ..' PO

a4
Nt

‘Pl

i ] N Lo . aa "
DAL e e e Sa Bt nd P ltoate A MR e S i L A ML A i e L AL AL A A S

Were it not for this fact, it would be possible to carry out the
semantics of Ina Jo in terms of deterministic machines exclusively.

What theorems about the mapping will ensure that M actually
satisfies the upper level of the specification, assuming that M’
satisfies the lower level? We must prove, for each transform, that
its lower-level specification entails its upper-level specification,
as translated into the vocabulary of the lower level by the mapping.
We must prove:

LowerLevelSpec => Map(Refcond) & Map(Effects).

The Ina Jo language processor generates a theorem of this form
for each external transform from a higher level.

Of course there is one other fact which we must also prove:
namely, that the initial state of M satisfies the initial condition
of the upper level. The initial state of M is just the result of
contracting the initial state of M” to the state variables which
actually occur in M, To establish that the initial state of M
satisfies the initial condition at the higher level, it is enough
show that the initial state of M” satisfies it. All we know about
the initial state of M” is that it satisfies the initial condition
of the lower level. The theorew we want, then, is:

LowerLevellInit => Map(UpperLevellnit).

These theorems, then, ensure the correctness of a refinement.

CONCLUSIONS

With these remarks on the correctness of mappings we complete
an extensive analysis of the design of the Ina Jo language. We have
tried to provide examples to illustrate the workings of all of the
major features of the language. Moreover, we have tried to point
out flaws in its design. These include the leveling mechanism, the
Refcond, and the type abstraction operator T". We have also pointed
out a number of points at which the logic embodied in the language
or language processor suffers from gaps or actual inconsistencies.
Moreover, we have argued that the conception of correctness embodied
in Ina Jo”s Criterion and Constraint is not completely general, and
that it does not allow us to express certain important kinds of
requirement. Nevertheless, the Ina Jo specification language is
lucid and flexible. It is a valuable tool on the specifier”s
workbench.

73

Lo |

A4 RN RR N

ro% A 4
Pl uh 2
Sl

Lol o
L)

AN

@




10.

11.

12,

REFERENCES

Digicomp Research Corporation, "Verification
Methodology Evaluation (VMAN)," forthcoming.

Dijkstra, E. W., Structured Programming, New York:
Academic Press, 1972.

Eggert, P. R. "Overview of the Ina Jo specification
Language," SDC TR-SP 4082, October, 1980.

Goguen, J. A. and J. Meseguer, "Security Policies
and Security Models," Proc. 1982 Symp. Security
and Privacy, IEEE No. 82CH1753-3, 11-20.

Goguen, J. A. and J. Meseguer, "Unwinding and
Inference Control,”" Proc. 1984 Symp. Security and
Privacy, IEEE No. 84CH2013-1, 75-86.

Huff, G. A., "A Pre-analysis of the KVM Formal
Specifications,”" WP 23993, The MITRE Corporationm,
Bedford, MA, 1981.

Kramer, S. M., "The Ina Jo Flow Table Generator,"
WP 23103, The MITRE Corporation, Bedford, MA, 1981.

Kramer, S. M., "Information Flow Security Analysis
for KVM/370 Specifications,” MIR 8799, The MITRE
Corporation, Bedford, MA, 1982.

Korelsky, T. and D. Sutherland, "Formal
Specification of a Multi-Level Secure Operating
System," Proc. 1984 Symp. Security and Privacy,
1IEEE No. 84CH2013-1, 209-18,

Millen, J. K. and C. M. Cerniglia, "Computer
Security Models," MTR 9531, The MITRE Corporation,
Bedford, MA, 1984.

Locasso, R., J. Scheid, V. Schorre, P. Eggert. "The
Ina Jo Specification Language Reference Manual,"
SDC TM-(L)-6021/001/00, June 1980.

Project 4030 Staff, "An Update Review of the Ina Jo
Verification Condition Generator," The MITRE
Corporation Working Paper 25972, Bedford, MA, 1985.

LR |
el
.

N hhd

oLy

%

(%
L ]
.

'l

.

N A
l..‘l'

el
OO
5
.
L

B R R

13
YO,

LA AT
“ rl
<Y e
II;.&‘...-' -‘

- o r
[ATNNENER
Afaa
PR ‘n'-"-
PV

.

.o

-
fi

P
Ky
'

-
B

oot
Y
Tl
~

Sl
e e
“ah’
....'-'1(('
DR
20
YN
'."

) - "..{ .‘:_'-._.'
P

7
4
L.z

EARLIVAYY .. &

-
oy
l—



X

]

PERY

T .
.' :.‘ 1"1.'1 '}.';..'

4
-‘ a%

Lo

»
- A

AR

oA

IRV,

SAANNSY

NAOA,

XYV T
oy

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

.......

REFERENCES (Concluded)

Platek, R., "An Update Review of the Ina Jo
Implementation Level," The MITRE Corporation
Working Paper 25971, Bedford, MA, 1985.

Platek, R. and D. Sutherland, "The Semantics of the
Feiertag MLS Information Flow Tool and Its Impact
on Design Verification: Some SCOMP Examples,"
Odyssey Research Associates, 1984.

Scheid, J., J. Landauer "Restaurant: An example of
the Ina Jo Software Development Methodolgy," SDC
TM-7043/000/00, October 1980.

Scheid, J.,"The Design of the Ina Jo Verification
Condition Generator (VCG) for Modula,™ SDC TM-
7393/000/00, September, 1983.

Scheid, J., "Modula VCG User Manual," SDC TM-
7393/001/00, September, 1983.

Scheid, J., "Implementation Specification," SDC
TM-7315/000/00, September 1983.

Scheid, J., "Conversion of FDM to Multics: Software
Requirements Specification for Enhancements," SDC
TM-7413-005/01, February, 1984,

Schorre, V., J. Stein " The 1TP User Manual," SDC
TM-6889/000/03, August 1983.

Stein, J., D. Gillmann "How to Prove Transform
Theorems Using the ITP Versiom 11," SDC, TM-(L)-
6021/003/00, Dec. 1980.

Tanenbaum, A. S., Structured Computer Organization,
2nd ed., Englewood Cliffs: Prentice-Hall, 1984.

75

\ e Sl
o‘l{\'\\- \':\ ) "\-..
AR

» % v "y
[N

AL

.
LIRS
P,

. 2 o

ALY 2

* .
r

- ,
ki
.f"'

N
s e
v
¢
s

[J

’

o &
l-'l
erd s
A.'
4
5
g}

-

’
.

[/

PR
o,
Y A Y
AKX
AN
&t
o

4

q
s il
. '}3

a5
.




LI R | v
#...«\.‘..f..........f\! N \:.... AR
LIP .-<¢ I\f-sf._ . )-)-)-J Pl Y

{
FNENES hIalads Sl B :
RO R L L ) ,
' » L-n-.,. ..’- -.1-- n.! --.\u.\}.-..‘-f.-f. ._
A ALY D S S i o

.
: .
FE LA R A

. ~

: " [
~ @ ~ Q

y - v o

* [ -} ~ @

- = oQ M

oV w ®m > e

o L 0w
~ -~ &M -TA©
-] (&3~ < «
3 S8 S3sm
m MPt Smc3
ord [« B} [ IR D
~ ‘- H [ oy - w O~
g 5 3 o B 8.3 WSS
o @ >N m

A Q 20 - (" o N o uei% ) rM

' ~ e~ XY @ © O oA o Q€ o~ - Qe
olsckmzkvPYtl [ ol
-] V- - tnlmatl ! tsW . £ -
npkrraam.l.hai o @ - 0 8T
< <G W~ NWVEKHZEE CA..n .nmu
=3 o) e s o & o s e ® & & & o o ] 2 QW% Y o U O N4
M ~ ozrm@maAaE30oAaAn"mY"N0O 3] L g8~ H v gvo
] e o 8 & e o & & o o & s o m Omro o~ g @
g = =4 a HORMOMASZED XK MAMED = O Qmmm
: (<}
-
B
=
xQ;
o) O
4 ~
[
[75] ~
' i 72}
o a ~
N ~
. W

P, [T} ~~
) n o
M cod ("] —

o -] ] ~ o
© W > ot —

b, o oD Dy B 8 [ — — @ - — «
f ] o L~ o M HD® ) > e om g -] - K
g =] A= 0O = R R IR N ST ] TR EREEEEE A

&= H @ W D> ankgeomms.nri W E © d DLt D @ W&o >t
ol 3] o U4 Herld O MO O g Q9 > WM Y L @M~ OO -]
’ o PRI S bvienwruehhlaaurllnwuaaou....iv.cmlaau

' ~ < M aWm AM..VB BBCCCCDWDFGG GHHJJHMMSS.MTTZ
M EO.O....5.B..........D...............S...
y M ln o ._I NI Rl ._I =] ORI EZTOR MM AOA AW Z M X n < X
. . e o o @ ....i........o..loo-..lnl..t.‘l

] =] < [ = ) ) (=] LFTJDMRCFHSBHKJJTHJHKRDJSJLRJPDH

/
R e L LR g WSS W " FPPIPILTT - BOPPXA,



Ty

R AP

APl
NG

gt

w -

e I s A

»

Akl

DY IC RN

N
-

Iy

LY
W allat e

- L}
ARSI YRVL W ARG S

AT R
.n".l}..‘".l\j\,‘:. Sata

(\f

SRSV

PV VT W VIR WY Ge Y WY E. S 1Y b &




